Description: If for every element of an indexing set A there exists a corresponding element of another set B , then there exists a subset of B consisting only of those elements which are indexed by A . Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | indexa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg | |
|
2 | ssrab2 | |
|
3 | 2 | a1i | |
4 | nfv | |
|
5 | nfre1 | |
|
6 | sbceq2a | |
|
7 | 6 | rspcev | |
8 | 7 | ancoms | |
9 | 8 | anim1ci | |
10 | 9 | anasss | |
11 | 10 | ancoms | |
12 | sbceq2a | |
|
13 | 12 | sbcbidv | |
14 | 13 | rexbidv | |
15 | 14 | elrab | |
16 | 11 15 | sylibr | |
17 | sbceq2a | |
|
18 | 17 | rspcev | |
19 | 16 18 | sylancom | |
20 | nfcv | |
|
21 | nfcv | |
|
22 | nfcv | |
|
23 | nfsbc1v | |
|
24 | 22 23 | nfsbcw | |
25 | 21 24 | nfrexw | |
26 | nfcv | |
|
27 | 25 26 | nfrabw | |
28 | nfsbc1v | |
|
29 | nfv | |
|
30 | 20 27 28 29 17 | cbvrexfw | |
31 | 19 30 | sylib | |
32 | 31 | exp31 | |
33 | 4 5 32 | rexlimd | |
34 | 33 | ralimia | |
35 | nfsbc1v | |
|
36 | nfv | |
|
37 | 35 36 6 | cbvrexw | |
38 | 14 37 | bitrdi | |
39 | 38 | elrab | |
40 | 39 | simprbi | |
41 | 40 | rgen | |
42 | 41 | a1i | |
43 | 3 34 42 | 3jca | |
44 | sseq1 | |
|
45 | nfcv | |
|
46 | nfsbc1v | |
|
47 | 45 46 | nfrexw | |
48 | nfcv | |
|
49 | 47 48 | nfrabw | |
50 | 49 | nfeq2 | |
51 | nfcv | |
|
52 | 51 27 | rexeqf | |
53 | 50 52 | ralbid | |
54 | 51 27 | raleqf | |
55 | 44 53 54 | 3anbi123d | |
56 | 55 | spcegv | |
57 | 56 | imp | |
58 | 1 43 57 | syl2an | |