Description: If for every element of a finite indexing set A there exists a corresponding element of another set B , then there exists a finite subset of B consisting only of those elements which are indexed by A . Proven without the Axiom of Choice, unlike indexdom . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indexfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfsbc1v | |
|
3 | sbceq1a | |
|
4 | 1 2 3 | cbvrexw | |
5 | 4 | ralbii | |
6 | dfsbcq | |
|
7 | 6 | ac6sfi | |
8 | 5 7 | sylan2b | |
9 | simpll | |
|
10 | ffn | |
|
11 | 10 | ad2antrl | |
12 | dffn4 | |
|
13 | 11 12 | sylib | |
14 | fofi | |
|
15 | 9 13 14 | syl2anc | |
16 | frn | |
|
17 | 16 | ad2antrl | |
18 | fnfvelrn | |
|
19 | 10 18 | sylan | |
20 | rspesbca | |
|
21 | 20 | ex | |
22 | 19 21 | syl | |
23 | 22 | ralimdva | |
24 | 23 | imp | |
25 | 24 | adantl | |
26 | simpr | |
|
27 | simprr | |
|
28 | nfv | |
|
29 | nfsbc1v | |
|
30 | fveq2 | |
|
31 | 30 | sbceq1d | |
32 | sbceq1a | |
|
33 | 31 32 | bitrd | |
34 | 28 29 33 | cbvralw | |
35 | 27 34 | sylib | |
36 | 35 | r19.21bi | |
37 | rspesbca | |
|
38 | 26 36 37 | syl2anc | |
39 | 38 | ralrimiva | |
40 | dfsbcq | |
|
41 | 40 | rexbidv | |
42 | 41 | ralrn | |
43 | 11 42 | syl | |
44 | 39 43 | mpbird | |
45 | nfv | |
|
46 | nfcv | |
|
47 | 46 2 | nfrexw | |
48 | 3 | rexbidv | |
49 | 45 47 48 | cbvralw | |
50 | 44 49 | sylibr | |
51 | sseq1 | |
|
52 | rexeq | |
|
53 | 52 | ralbidv | |
54 | raleq | |
|
55 | 51 53 54 | 3anbi123d | |
56 | 55 | rspcev | |
57 | 15 17 25 50 56 | syl13anc | |
58 | 8 57 | exlimddv | |
59 | 58 | 3adant2 | |