Metamath Proof Explorer


Theorem indf

Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017)

Ref Expression
Assertion indf O V A O 𝟙 O A : O 0 1

Proof

Step Hyp Ref Expression
1 indval O V A O 𝟙 O A = x O if x A 1 0
2 1re 1
3 0re 0
4 ifpr 1 0 if x A 1 0 1 0
5 2 3 4 mp2an if x A 1 0 1 0
6 prcom 1 0 = 0 1
7 5 6 eleqtri if x A 1 0 0 1
8 7 a1i O V A O x O if x A 1 0 0 1
9 1 8 fmpt3d O V A O 𝟙 O A : O 0 1