Metamath Proof Explorer


Theorem indifdi

Description: Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024)

Ref Expression
Assertion indifdi A B C = A B A C

Proof

Step Hyp Ref Expression
1 elin x A B C x A x B C
2 eldif x B C x B ¬ x C
3 2 anbi2i x A x B C x A x B ¬ x C
4 abai x A ¬ x C x A x A ¬ x C
5 4 anbi2i x B x A ¬ x C x B x A x A ¬ x C
6 an12 x A x B ¬ x C x B x A ¬ x C
7 eldif x A B A C x A B ¬ x A C
8 elin x A B x A x B
9 8 bicomi x A x B x A B
10 imnan x A ¬ x C ¬ x A x C
11 elin x A C x A x C
12 10 11 xchbinxr x A ¬ x C ¬ x A C
13 9 12 anbi12i x A x B x A ¬ x C x A B ¬ x A C
14 an21 x A x B x A ¬ x C x B x A x A ¬ x C
15 7 13 14 3bitr2i x A B A C x B x A x A ¬ x C
16 5 6 15 3bitr4i x A x B ¬ x C x A B A C
17 1 3 16 3bitri x A B C x A B A C
18 17 eqriv A B C = A B A C