Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Combinations of difference, union, and intersection of two classes
indifdi
Next ⟩
indifdir
Metamath Proof Explorer
Ascii
Unicode
Theorem
indifdi
Description:
Distribute intersection over difference.
(Contributed by
BTernaryTau
, 14-Aug-2024)
Ref
Expression
Assertion
indifdi
⊢
A
∩
B
∖
C
=
A
∩
B
∖
A
∩
C
Proof
Step
Hyp
Ref
Expression
1
elin
⊢
x
∈
A
∩
B
∖
C
↔
x
∈
A
∧
x
∈
B
∖
C
2
eldif
⊢
x
∈
B
∖
C
↔
x
∈
B
∧
¬
x
∈
C
3
2
anbi2i
⊢
x
∈
A
∧
x
∈
B
∖
C
↔
x
∈
A
∧
x
∈
B
∧
¬
x
∈
C
4
abai
⊢
x
∈
A
∧
¬
x
∈
C
↔
x
∈
A
∧
x
∈
A
→
¬
x
∈
C
5
4
anbi2i
⊢
x
∈
B
∧
x
∈
A
∧
¬
x
∈
C
↔
x
∈
B
∧
x
∈
A
∧
x
∈
A
→
¬
x
∈
C
6
an12
⊢
x
∈
A
∧
x
∈
B
∧
¬
x
∈
C
↔
x
∈
B
∧
x
∈
A
∧
¬
x
∈
C
7
eldif
⊢
x
∈
A
∩
B
∖
A
∩
C
↔
x
∈
A
∩
B
∧
¬
x
∈
A
∩
C
8
elin
⊢
x
∈
A
∩
B
↔
x
∈
A
∧
x
∈
B
9
8
bicomi
⊢
x
∈
A
∧
x
∈
B
↔
x
∈
A
∩
B
10
imnan
⊢
x
∈
A
→
¬
x
∈
C
↔
¬
x
∈
A
∧
x
∈
C
11
elin
⊢
x
∈
A
∩
C
↔
x
∈
A
∧
x
∈
C
12
10
11
xchbinxr
⊢
x
∈
A
→
¬
x
∈
C
↔
¬
x
∈
A
∩
C
13
9
12
anbi12i
⊢
x
∈
A
∧
x
∈
B
∧
x
∈
A
→
¬
x
∈
C
↔
x
∈
A
∩
B
∧
¬
x
∈
A
∩
C
14
an21
⊢
x
∈
A
∧
x
∈
B
∧
x
∈
A
→
¬
x
∈
C
↔
x
∈
B
∧
x
∈
A
∧
x
∈
A
→
¬
x
∈
C
15
7
13
14
3bitr2i
⊢
x
∈
A
∩
B
∖
A
∩
C
↔
x
∈
B
∧
x
∈
A
∧
x
∈
A
→
¬
x
∈
C
16
5
6
15
3bitr4i
⊢
x
∈
A
∧
x
∈
B
∧
¬
x
∈
C
↔
x
∈
A
∩
B
∖
A
∩
C
17
1
3
16
3bitri
⊢
x
∈
A
∩
B
∖
C
↔
x
∈
A
∩
B
∖
A
∩
C
18
17
eqriv
⊢
A
∩
B
∖
C
=
A
∩
B
∖
A
∩
C