Metamath Proof Explorer


Theorem indifdirOLD

Description: Obsolete version of indifdir as of 14-Aug-2024. (Contributed by Scott Fenton, 14-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion indifdirOLD A B C = A C B C

Proof

Step Hyp Ref Expression
1 pm3.24 ¬ x C ¬ x C
2 1 intnan ¬ x A x C ¬ x C
3 anass x A x C ¬ x C x A x C ¬ x C
4 2 3 mtbir ¬ x A x C ¬ x C
5 4 biorfi x A x C ¬ x B x A x C ¬ x B x A x C ¬ x C
6 an32 x A ¬ x B x C x A x C ¬ x B
7 andi x A x C ¬ x B ¬ x C x A x C ¬ x B x A x C ¬ x C
8 5 6 7 3bitr4i x A ¬ x B x C x A x C ¬ x B ¬ x C
9 ianor ¬ x B x C ¬ x B ¬ x C
10 9 anbi2i x A x C ¬ x B x C x A x C ¬ x B ¬ x C
11 8 10 bitr4i x A ¬ x B x C x A x C ¬ x B x C
12 elin x A B C x A B x C
13 eldif x A B x A ¬ x B
14 13 anbi1i x A B x C x A ¬ x B x C
15 12 14 bitri x A B C x A ¬ x B x C
16 eldif x A C B C x A C ¬ x B C
17 elin x A C x A x C
18 elin x B C x B x C
19 18 notbii ¬ x B C ¬ x B x C
20 17 19 anbi12i x A C ¬ x B C x A x C ¬ x B x C
21 16 20 bitri x A C B C x A x C ¬ x B x C
22 11 15 21 3bitr4i x A B C x A C B C
23 22 eqriv A B C = A C B C