Metamath Proof Explorer


Theorem indifundif

Description: A remarkable equation with sets. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Assertion indifundif A B C A B = A B C

Proof

Step Hyp Ref Expression
1 difindi A B C = A B A C
2 difundir A B A B C = A B C A B C
3 inundif A B A B = A
4 3 difeq1i A B A B C = A C
5 uncom A B C A B C = A B C A B C
6 2 4 5 3eqtr3i A C = A B C A B C
7 6 uneq2i A B A C = A B A B C A B C
8 unass A B A B C A B C = A B A B C A B C
9 undifabs A B A B C = A B
10 9 uneq1i A B A B C A B C = A B A B C
11 7 8 10 3eqtr2i A B A C = A B A B C
12 uncom A B A B C = A B C A B
13 1 11 12 3eqtrri A B C A B = A B C