Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Set relations and operations - misc additions
indifundif
Next ⟩
elpwincl1
Metamath Proof Explorer
Ascii
Unicode
Theorem
indifundif
Description:
A remarkable equation with sets.
(Contributed by
Thierry Arnoux
, 18-May-2020)
Ref
Expression
Assertion
indifundif
⊢
A
∩
B
∖
C
∪
A
∖
B
=
A
∖
B
∩
C
Proof
Step
Hyp
Ref
Expression
1
difindi
⊢
A
∖
B
∩
C
=
A
∖
B
∪
A
∖
C
2
difundir
⊢
A
∩
B
∪
A
∖
B
∖
C
=
A
∩
B
∖
C
∪
A
∖
B
∖
C
3
inundif
⊢
A
∩
B
∪
A
∖
B
=
A
4
3
difeq1i
⊢
A
∩
B
∪
A
∖
B
∖
C
=
A
∖
C
5
uncom
⊢
A
∩
B
∖
C
∪
A
∖
B
∖
C
=
A
∖
B
∖
C
∪
A
∩
B
∖
C
6
2
4
5
3eqtr3i
⊢
A
∖
C
=
A
∖
B
∖
C
∪
A
∩
B
∖
C
7
6
uneq2i
⊢
A
∖
B
∪
A
∖
C
=
A
∖
B
∪
A
∖
B
∖
C
∪
A
∩
B
∖
C
8
unass
⊢
A
∖
B
∪
A
∖
B
∖
C
∪
A
∩
B
∖
C
=
A
∖
B
∪
A
∖
B
∖
C
∪
A
∩
B
∖
C
9
undifabs
⊢
A
∖
B
∪
A
∖
B
∖
C
=
A
∖
B
10
9
uneq1i
⊢
A
∖
B
∪
A
∖
B
∖
C
∪
A
∩
B
∖
C
=
A
∖
B
∪
A
∩
B
∖
C
11
7
8
10
3eqtr2i
⊢
A
∖
B
∪
A
∖
C
=
A
∖
B
∪
A
∩
B
∖
C
12
uncom
⊢
A
∖
B
∪
A
∩
B
∖
C
=
A
∩
B
∖
C
∪
A
∖
B
13
1
11
12
3eqtrri
⊢
A
∩
B
∖
C
∪
A
∖
B
=
A
∖
B
∩
C