Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indisconn | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indistop | ||
| 2 | inss1 | ||
| 3 | indislem | ||
| 4 | 2 3 | sseqtrri | |
| 5 | indisuni | ||
| 6 | 5 | isconn2 | |
| 7 | 1 4 6 | mpbir2an |