Metamath Proof Explorer


Theorem indisconn

Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisconn A Conn

Proof

Step Hyp Ref Expression
1 indistop A Top
2 inss1 A Clsd A A
3 indislem I A = A
4 2 3 sseqtrri A Clsd A I A
5 indisuni I A = A
6 5 isconn2 A Conn A Top A Clsd A I A
7 1 4 6 mpbir2an A Conn