Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indisconn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistop | ||
2 | inss1 | ||
3 | indislem | ||
4 | 2 3 | sseqtrri | |
5 | indisuni | ||
6 | 5 | isconn2 | |
7 | 1 4 6 | mpbir2an |