Metamath Proof Explorer


Theorem indishmph

Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008) (Proof shortened by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion indishmph A B A B

Proof

Step Hyp Ref Expression
1 bren A B f f : A 1-1 onto B
2 f1of f : A 1-1 onto B f : A B
3 f1odm f : A 1-1 onto B dom f = A
4 vex f V
5 4 dmex dom f V
6 3 5 eqeltrrdi f : A 1-1 onto B A V
7 f1ofo f : A 1-1 onto B f : A onto B
8 fornex A V f : A onto B B V
9 6 7 8 sylc f : A 1-1 onto B B V
10 9 6 elmapd f : A 1-1 onto B f B A f : A B
11 2 10 mpbird f : A 1-1 onto B f B A
12 indistopon A V A TopOn A
13 6 12 syl f : A 1-1 onto B A TopOn A
14 cnindis A TopOn A B V A Cn B = B A
15 13 9 14 syl2anc f : A 1-1 onto B A Cn B = B A
16 11 15 eleqtrrd f : A 1-1 onto B f A Cn B
17 f1ocnv f : A 1-1 onto B f -1 : B 1-1 onto A
18 f1of f -1 : B 1-1 onto A f -1 : B A
19 17 18 syl f : A 1-1 onto B f -1 : B A
20 6 9 elmapd f : A 1-1 onto B f -1 A B f -1 : B A
21 19 20 mpbird f : A 1-1 onto B f -1 A B
22 indistopon B V B TopOn B
23 9 22 syl f : A 1-1 onto B B TopOn B
24 cnindis B TopOn B A V B Cn A = A B
25 23 6 24 syl2anc f : A 1-1 onto B B Cn A = A B
26 21 25 eleqtrrd f : A 1-1 onto B f -1 B Cn A
27 ishmeo f A Homeo B f A Cn B f -1 B Cn A
28 16 26 27 sylanbrc f : A 1-1 onto B f A Homeo B
29 hmphi f A Homeo B A B
30 28 29 syl f : A 1-1 onto B A B
31 30 exlimiv f f : A 1-1 onto B A B
32 1 31 sylbi A B A B