Metamath Proof Explorer


Theorem indislem

Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indislem I A = A

Proof

Step Hyp Ref Expression
1 fvi A V I A = A
2 1 preq2d A V I A = A
3 dfsn2 =
4 3 eqcomi =
5 fvprc ¬ A V I A =
6 5 preq2d ¬ A V I A =
7 prprc2 ¬ A V A =
8 4 6 7 3eqtr4a ¬ A V I A = A
9 2 8 pm2.61i I A = A