| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspr |
|
| 2 |
|
unieq |
|
| 3 |
|
uni0 |
|
| 4 |
|
0ex |
|
| 5 |
4
|
prid1 |
|
| 6 |
3 5
|
eqeltri |
|
| 7 |
2 6
|
eqeltrdi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
unieq |
|
| 10 |
4
|
unisn |
|
| 11 |
10 5
|
eqeltri |
|
| 12 |
9 11
|
eqeltrdi |
|
| 13 |
12
|
a1i |
|
| 14 |
8 13
|
jaod |
|
| 15 |
|
unieq |
|
| 16 |
|
unisng |
|
| 17 |
15 16
|
sylan9eqr |
|
| 18 |
|
prid2g |
|
| 19 |
18
|
adantr |
|
| 20 |
17 19
|
eqeltrd |
|
| 21 |
20
|
ex |
|
| 22 |
|
unieq |
|
| 23 |
|
uniprg |
|
| 24 |
4 23
|
mpan |
|
| 25 |
|
uncom |
|
| 26 |
|
un0 |
|
| 27 |
25 26
|
eqtri |
|
| 28 |
24 27
|
eqtrdi |
|
| 29 |
22 28
|
sylan9eqr |
|
| 30 |
18
|
adantr |
|
| 31 |
29 30
|
eqeltrd |
|
| 32 |
31
|
ex |
|
| 33 |
21 32
|
jaod |
|
| 34 |
14 33
|
jaod |
|
| 35 |
1 34
|
biimtrid |
|
| 36 |
35
|
alrimiv |
|
| 37 |
|
vex |
|
| 38 |
37
|
elpr |
|
| 39 |
|
vex |
|
| 40 |
39
|
elpr |
|
| 41 |
|
simpr |
|
| 42 |
41
|
ineq2d |
|
| 43 |
|
in0 |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
44 5
|
eqeltrdi |
|
| 46 |
45
|
a1i |
|
| 47 |
|
simpr |
|
| 48 |
47
|
ineq2d |
|
| 49 |
48 43
|
eqtrdi |
|
| 50 |
49 5
|
eqeltrdi |
|
| 51 |
50
|
a1i |
|
| 52 |
|
simpl |
|
| 53 |
52
|
ineq1d |
|
| 54 |
|
0in |
|
| 55 |
53 54
|
eqtrdi |
|
| 56 |
55 5
|
eqeltrdi |
|
| 57 |
56
|
a1i |
|
| 58 |
|
ineq12 |
|
| 59 |
58
|
adantl |
|
| 60 |
|
inidm |
|
| 61 |
59 60
|
eqtrdi |
|
| 62 |
18
|
adantr |
|
| 63 |
61 62
|
eqeltrd |
|
| 64 |
63
|
ex |
|
| 65 |
46 51 57 64
|
ccased |
|
| 66 |
65
|
expdimp |
|
| 67 |
40 66
|
biimtrid |
|
| 68 |
67
|
ralrimiv |
|
| 69 |
68
|
ex |
|
| 70 |
38 69
|
biimtrid |
|
| 71 |
70
|
ralrimiv |
|
| 72 |
|
prex |
|
| 73 |
|
istopg |
|
| 74 |
72 73
|
mp1i |
|
| 75 |
36 71 74
|
mpbir2and |
|
| 76 |
28
|
eqcomd |
|
| 77 |
|
istopon |
|
| 78 |
75 76 77
|
sylanbrc |
|