Metamath Proof Explorer


Theorem indistopon

Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion indistopon A V A TopOn A

Proof

Step Hyp Ref Expression
1 sspr x A x = x = x = A x = A
2 unieq x = x =
3 uni0 =
4 0ex V
5 4 prid1 A
6 3 5 eqeltri A
7 2 6 eqeltrdi x = x A
8 7 a1i A V x = x A
9 unieq x = x =
10 4 unisn =
11 10 5 eqeltri A
12 9 11 eqeltrdi x = x A
13 12 a1i A V x = x A
14 8 13 jaod A V x = x = x A
15 unieq x = A x = A
16 unisng A V A = A
17 15 16 sylan9eqr A V x = A x = A
18 prid2g A V A A
19 18 adantr A V x = A A A
20 17 19 eqeltrd A V x = A x A
21 20 ex A V x = A x A
22 unieq x = A x = A
23 uniprg V A V A = A
24 4 23 mpan A V A = A
25 uncom A = A
26 un0 A = A
27 25 26 eqtri A = A
28 24 27 eqtrdi A V A = A
29 22 28 sylan9eqr A V x = A x = A
30 18 adantr A V x = A A A
31 29 30 eqeltrd A V x = A x A
32 31 ex A V x = A x A
33 21 32 jaod A V x = A x = A x A
34 14 33 jaod A V x = x = x = A x = A x A
35 1 34 syl5bi A V x A x A
36 35 alrimiv A V x x A x A
37 vex x V
38 37 elpr x A x = x = A
39 vex y V
40 39 elpr y A y = y = A
41 simpr x = y = y =
42 41 ineq2d x = y = x y = x
43 in0 x =
44 42 43 eqtrdi x = y = x y =
45 44 5 eqeltrdi x = y = x y A
46 45 a1i A V x = y = x y A
47 simpr x = A y = y =
48 47 ineq2d x = A y = x y = x
49 48 43 eqtrdi x = A y = x y =
50 49 5 eqeltrdi x = A y = x y A
51 50 a1i A V x = A y = x y A
52 simpl x = y = A x =
53 52 ineq1d x = y = A x y = y
54 0in y =
55 53 54 eqtrdi x = y = A x y =
56 55 5 eqeltrdi x = y = A x y A
57 56 a1i A V x = y = A x y A
58 ineq12 x = A y = A x y = A A
59 58 adantl A V x = A y = A x y = A A
60 inidm A A = A
61 59 60 eqtrdi A V x = A y = A x y = A
62 18 adantr A V x = A y = A A A
63 61 62 eqeltrd A V x = A y = A x y A
64 63 ex A V x = A y = A x y A
65 46 51 57 64 ccased A V x = x = A y = y = A x y A
66 65 expdimp A V x = x = A y = y = A x y A
67 40 66 syl5bi A V x = x = A y A x y A
68 67 ralrimiv A V x = x = A y A x y A
69 68 ex A V x = x = A y A x y A
70 38 69 syl5bi A V x A y A x y A
71 70 ralrimiv A V x A y A x y A
72 prex A V
73 istopg A V A Top x x A x A x A y A x y A
74 72 73 mp1i A V A Top x x A x A x A y A x y A
75 36 71 74 mpbir2and A V A Top
76 28 eqcomd A V A = A
77 istopon A TopOn A A Top A = A
78 75 76 77 sylanbrc A V A TopOn A