Step |
Hyp |
Ref |
Expression |
1 |
|
sspr |
|
2 |
|
unieq |
|
3 |
|
uni0 |
|
4 |
|
0ex |
|
5 |
4
|
prid1 |
|
6 |
3 5
|
eqeltri |
|
7 |
2 6
|
eqeltrdi |
|
8 |
7
|
a1i |
|
9 |
|
unieq |
|
10 |
4
|
unisn |
|
11 |
10 5
|
eqeltri |
|
12 |
9 11
|
eqeltrdi |
|
13 |
12
|
a1i |
|
14 |
8 13
|
jaod |
|
15 |
|
unieq |
|
16 |
|
unisng |
|
17 |
15 16
|
sylan9eqr |
|
18 |
|
prid2g |
|
19 |
18
|
adantr |
|
20 |
17 19
|
eqeltrd |
|
21 |
20
|
ex |
|
22 |
|
unieq |
|
23 |
|
uniprg |
|
24 |
4 23
|
mpan |
|
25 |
|
uncom |
|
26 |
|
un0 |
|
27 |
25 26
|
eqtri |
|
28 |
24 27
|
eqtrdi |
|
29 |
22 28
|
sylan9eqr |
|
30 |
18
|
adantr |
|
31 |
29 30
|
eqeltrd |
|
32 |
31
|
ex |
|
33 |
21 32
|
jaod |
|
34 |
14 33
|
jaod |
|
35 |
1 34
|
syl5bi |
|
36 |
35
|
alrimiv |
|
37 |
|
vex |
|
38 |
37
|
elpr |
|
39 |
|
vex |
|
40 |
39
|
elpr |
|
41 |
|
simpr |
|
42 |
41
|
ineq2d |
|
43 |
|
in0 |
|
44 |
42 43
|
eqtrdi |
|
45 |
44 5
|
eqeltrdi |
|
46 |
45
|
a1i |
|
47 |
|
simpr |
|
48 |
47
|
ineq2d |
|
49 |
48 43
|
eqtrdi |
|
50 |
49 5
|
eqeltrdi |
|
51 |
50
|
a1i |
|
52 |
|
simpl |
|
53 |
52
|
ineq1d |
|
54 |
|
0in |
|
55 |
53 54
|
eqtrdi |
|
56 |
55 5
|
eqeltrdi |
|
57 |
56
|
a1i |
|
58 |
|
ineq12 |
|
59 |
58
|
adantl |
|
60 |
|
inidm |
|
61 |
59 60
|
eqtrdi |
|
62 |
18
|
adantr |
|
63 |
61 62
|
eqeltrd |
|
64 |
63
|
ex |
|
65 |
46 51 57 64
|
ccased |
|
66 |
65
|
expdimp |
|
67 |
40 66
|
syl5bi |
|
68 |
67
|
ralrimiv |
|
69 |
68
|
ex |
|
70 |
38 69
|
syl5bi |
|
71 |
70
|
ralrimiv |
|
72 |
|
prex |
|
73 |
|
istopg |
|
74 |
72 73
|
mp1i |
|
75 |
36 71 74
|
mpbir2and |
|
76 |
28
|
eqcomd |
|
77 |
|
istopon |
|
78 |
75 76 77
|
sylanbrc |
|