Metamath Proof Explorer


Theorem indisuni

Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisuni I A = A

Proof

Step Hyp Ref Expression
1 indislem I A = A
2 fvex I A V
3 indistopon I A V I A TopOn I A
4 2 3 ax-mp I A TopOn I A
5 1 4 eqeltrri A TopOn I A
6 5 toponunii I A = A