Metamath Proof Explorer


Theorem indpreima

Description: A function with range { 0 , 1 } as an indicator of the preimage of { 1 } . (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Assertion indpreima O V F : O 0 1 F = 𝟙 O F -1 1

Proof

Step Hyp Ref Expression
1 ffn F : O 0 1 F Fn O
2 1 adantl O V F : O 0 1 F Fn O
3 cnvimass F -1 1 dom F
4 fdm F : O 0 1 dom F = O
5 4 adantl O V F : O 0 1 dom F = O
6 3 5 sseqtrid O V F : O 0 1 F -1 1 O
7 indf O V F -1 1 O 𝟙 O F -1 1 : O 0 1
8 6 7 syldan O V F : O 0 1 𝟙 O F -1 1 : O 0 1
9 8 ffnd O V F : O 0 1 𝟙 O F -1 1 Fn O
10 simpr O V F : O 0 1 F : O 0 1
11 10 ffvelrnda O V F : O 0 1 x O F x 0 1
12 prcom 0 1 = 1 0
13 11 12 eleqtrdi O V F : O 0 1 x O F x 1 0
14 8 ffvelrnda O V F : O 0 1 x O 𝟙 O F -1 1 x 0 1
15 14 12 eleqtrdi O V F : O 0 1 x O 𝟙 O F -1 1 x 1 0
16 simpll O V F : O 0 1 x O O V
17 6 adantr O V F : O 0 1 x O F -1 1 O
18 simpr O V F : O 0 1 x O x O
19 ind1a O V F -1 1 O x O 𝟙 O F -1 1 x = 1 x F -1 1
20 16 17 18 19 syl3anc O V F : O 0 1 x O 𝟙 O F -1 1 x = 1 x F -1 1
21 fniniseg F Fn O x F -1 1 x O F x = 1
22 2 21 syl O V F : O 0 1 x F -1 1 x O F x = 1
23 22 baibd O V F : O 0 1 x O x F -1 1 F x = 1
24 20 23 bitr2d O V F : O 0 1 x O F x = 1 𝟙 O F -1 1 x = 1
25 13 15 24 elpreq O V F : O 0 1 x O F x = 𝟙 O F -1 1 x
26 2 9 25 eqfnfvd O V F : O 0 1 F = 𝟙 O F -1 1