Metamath Proof Explorer


Theorem indsum

Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Hypotheses indsum.1 φ O Fin
indsum.2 φ A O
indsum.3 φ x O B
Assertion indsum φ x O 𝟙 O A x B = x A B

Proof

Step Hyp Ref Expression
1 indsum.1 φ O Fin
2 indsum.2 φ A O
3 indsum.3 φ x O B
4 2 sselda φ x A x O
5 pr01ssre 0 1
6 indf O Fin A O 𝟙 O A : O 0 1
7 1 2 6 syl2anc φ 𝟙 O A : O 0 1
8 7 ffvelrnda φ x O 𝟙 O A x 0 1
9 5 8 sseldi φ x O 𝟙 O A x
10 9 recnd φ x O 𝟙 O A x
11 10 3 mulcld φ x O 𝟙 O A x B
12 4 11 syldan φ x A 𝟙 O A x B
13 1 adantr φ x O A O Fin
14 2 adantr φ x O A A O
15 simpr φ x O A x O A
16 ind0 O Fin A O x O A 𝟙 O A x = 0
17 13 14 15 16 syl3anc φ x O A 𝟙 O A x = 0
18 17 oveq1d φ x O A 𝟙 O A x B = 0 B
19 difssd φ O A O
20 19 sselda φ x O A x O
21 3 mul02d φ x O 0 B = 0
22 20 21 syldan φ x O A 0 B = 0
23 18 22 eqtrd φ x O A 𝟙 O A x B = 0
24 2 12 23 1 fsumss φ x A 𝟙 O A x B = x O 𝟙 O A x B
25 1 adantr φ x A O Fin
26 2 adantr φ x A A O
27 simpr φ x A x A
28 ind1 O Fin A O x A 𝟙 O A x = 1
29 25 26 27 28 syl3anc φ x A 𝟙 O A x = 1
30 29 oveq1d φ x A 𝟙 O A x B = 1 B
31 3 mulid2d φ x O 1 B = B
32 4 31 syldan φ x A 1 B = B
33 30 32 eqtrd φ x A 𝟙 O A x B = B
34 33 sumeq2dv φ x A 𝟙 O A x B = x A B
35 24 34 eqtr3d φ x O 𝟙 O A x B = x A B