Step |
Hyp |
Ref |
Expression |
1 |
|
indsum.1 |
|
2 |
|
indsum.2 |
|
3 |
|
indsum.3 |
|
4 |
2
|
sselda |
|
5 |
|
pr01ssre |
|
6 |
|
indf |
|
7 |
1 2 6
|
syl2anc |
|
8 |
7
|
ffvelrnda |
|
9 |
5 8
|
sselid |
|
10 |
9
|
recnd |
|
11 |
10 3
|
mulcld |
|
12 |
4 11
|
syldan |
|
13 |
1
|
adantr |
|
14 |
2
|
adantr |
|
15 |
|
simpr |
|
16 |
|
ind0 |
|
17 |
13 14 15 16
|
syl3anc |
|
18 |
17
|
oveq1d |
|
19 |
|
difssd |
|
20 |
19
|
sselda |
|
21 |
3
|
mul02d |
|
22 |
20 21
|
syldan |
|
23 |
18 22
|
eqtrd |
|
24 |
2 12 23 1
|
fsumss |
|
25 |
1
|
adantr |
|
26 |
2
|
adantr |
|
27 |
|
simpr |
|
28 |
|
ind1 |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
29
|
oveq1d |
|
31 |
3
|
mulid2d |
|
32 |
4 31
|
syldan |
|
33 |
30 32
|
eqtrd |
|
34 |
33
|
sumeq2dv |
|
35 |
24 34
|
eqtr3d |
|