Step |
Hyp |
Ref |
Expression |
1 |
|
indsumin.1 |
|
2 |
|
indsumin.2 |
|
3 |
|
indsumin.3 |
|
4 |
|
indsumin.4 |
|
5 |
|
indsumin.5 |
|
6 |
|
inindif |
|
7 |
6
|
a1i |
|
8 |
|
inundif |
|
9 |
8
|
eqcomi |
|
10 |
9
|
a1i |
|
11 |
|
pr01ssre |
|
12 |
|
ax-resscn |
|
13 |
11 12
|
sstri |
|
14 |
|
indf |
|
15 |
1 4 14
|
syl2anc |
|
16 |
15
|
adantr |
|
17 |
3
|
sselda |
|
18 |
16 17
|
ffvelrnd |
|
19 |
13 18
|
sselid |
|
20 |
19 5
|
mulcld |
|
21 |
7 10 2 20
|
fsumsplit |
|
22 |
1
|
adantr |
|
23 |
4
|
adantr |
|
24 |
|
inss2 |
|
25 |
24
|
a1i |
|
26 |
25
|
sselda |
|
27 |
|
ind1 |
|
28 |
22 23 26 27
|
syl3anc |
|
29 |
28
|
oveq1d |
|
30 |
|
inss1 |
|
31 |
30
|
a1i |
|
32 |
31
|
sselda |
|
33 |
32 5
|
syldan |
|
34 |
33
|
mulid2d |
|
35 |
29 34
|
eqtrd |
|
36 |
35
|
sumeq2dv |
|
37 |
1
|
adantr |
|
38 |
4
|
adantr |
|
39 |
3
|
ssdifd |
|
40 |
39
|
sselda |
|
41 |
|
ind0 |
|
42 |
37 38 40 41
|
syl3anc |
|
43 |
42
|
oveq1d |
|
44 |
|
difssd |
|
45 |
44
|
sselda |
|
46 |
45 5
|
syldan |
|
47 |
46
|
mul02d |
|
48 |
43 47
|
eqtrd |
|
49 |
48
|
sumeq2dv |
|
50 |
|
diffi |
|
51 |
2 50
|
syl |
|
52 |
|
sumz |
|
53 |
52
|
olcs |
|
54 |
51 53
|
syl |
|
55 |
49 54
|
eqtrd |
|
56 |
36 55
|
oveq12d |
|
57 |
|
infi |
|
58 |
2 57
|
syl |
|
59 |
58 33
|
fsumcl |
|
60 |
59
|
addid1d |
|
61 |
21 56 60
|
3eqtrd |
|