Metamath Proof Explorer


Theorem indthinc

Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses indthinc.b φ B = Base C
indthinc.h φ B × B × 1 𝑜 = Hom C
indthinc.o φ = comp C
indthinc.c φ C V
Assertion indthinc Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 indthinc.b φ B = Base C
2 indthinc.h φ B × B × 1 𝑜 = Hom C
3 indthinc.o φ = comp C
4 indthinc.c φ C V
5 eqidd φ x B y B B × B × 1 𝑜 = B × B × 1 𝑜
6 5 f1omo φ x B y B * f f B × B × 1 𝑜 x y
7 df-ov x B × B × 1 𝑜 y = B × B × 1 𝑜 x y
8 7 eleq2i f x B × B × 1 𝑜 y f B × B × 1 𝑜 x y
9 8 mobii * f f x B × B × 1 𝑜 y * f f B × B × 1 𝑜 x y
10 6 9 sylibr φ x B y B * f f x B × B × 1 𝑜 y
11 biid x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z
12 id y B y B
13 12 ancli y B y B y B
14 1oex 1 𝑜 V
15 14 ovconst2 y B y B y B × B × 1 𝑜 y = 1 𝑜
16 0lt1o 1 𝑜
17 eleq2 y B × B × 1 𝑜 y = 1 𝑜 y B × B × 1 𝑜 y 1 𝑜
18 16 17 mpbiri y B × B × 1 𝑜 y = 1 𝑜 y B × B × 1 𝑜 y
19 13 15 18 3syl y B y B × B × 1 𝑜 y
20 19 adantl φ y B y B × B × 1 𝑜 y
21 16 a1i x B y B z B 1 𝑜
22 0ov x y z =
23 22 oveqi g x y z f = g f
24 0ov g f =
25 23 24 eqtri g x y z f =
26 25 a1i x B y B z B g x y z f =
27 14 ovconst2 x B z B x B × B × 1 𝑜 z = 1 𝑜
28 27 3adant2 x B y B z B x B × B × 1 𝑜 z = 1 𝑜
29 21 26 28 3eltr4d x B y B z B g x y z f x B × B × 1 𝑜 z
30 29 ad2antrl φ x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z g x y z f x B × B × 1 𝑜 z
31 1 2 10 3 4 11 20 30 isthincd2 Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-