Metamath Proof Explorer


Theorem indthincALT

Description: An alternate proof for indthinc assuming more axioms including ax-pow and ax-un . (Contributed by Zhi Wang, 17-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses indthinc.b φ B = Base C
indthinc.h φ B × B × 1 𝑜 = Hom C
indthinc.o φ = comp C
indthinc.c φ C V
Assertion indthincALT Could not format assertion : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 indthinc.b φ B = Base C
2 indthinc.h φ B × B × 1 𝑜 = Hom C
3 indthinc.o φ = comp C
4 indthinc.c φ C V
5 1oex 1 𝑜 V
6 5 ovconst2 x B y B x B × B × 1 𝑜 y = 1 𝑜
7 domrefg 1 𝑜 V 1 𝑜 1 𝑜
8 5 7 ax-mp 1 𝑜 1 𝑜
9 6 8 eqbrtrdi x B y B x B × B × 1 𝑜 y 1 𝑜
10 modom2 * f f x B × B × 1 𝑜 y x B × B × 1 𝑜 y 1 𝑜
11 9 10 sylibr x B y B * f f x B × B × 1 𝑜 y
12 11 adantl φ x B y B * f f x B × B × 1 𝑜 y
13 biid x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z
14 id y B y B
15 14 ancli y B y B y B
16 5 ovconst2 y B y B y B × B × 1 𝑜 y = 1 𝑜
17 0lt1o 1 𝑜
18 eleq2 y B × B × 1 𝑜 y = 1 𝑜 y B × B × 1 𝑜 y 1 𝑜
19 17 18 mpbiri y B × B × 1 𝑜 y = 1 𝑜 y B × B × 1 𝑜 y
20 15 16 19 3syl y B y B × B × 1 𝑜 y
21 20 adantl φ y B y B × B × 1 𝑜 y
22 17 a1i x B y B z B 1 𝑜
23 0ov x y z =
24 23 oveqi g x y z f = g f
25 0ov g f =
26 24 25 eqtri g x y z f =
27 26 a1i x B y B z B g x y z f =
28 5 ovconst2 x B z B x B × B × 1 𝑜 z = 1 𝑜
29 28 3adant2 x B y B z B x B × B × 1 𝑜 z = 1 𝑜
30 22 27 29 3eltr4d x B y B z B g x y z f x B × B × 1 𝑜 z
31 30 ad2antrl φ x B y B z B f x B × B × 1 𝑜 y g y B × B × 1 𝑜 z g x y z f x B × B × 1 𝑜 z
32 1 2 12 3 4 13 21 31 isthincd2 Could not format ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) : No typesetting found for |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) with typecode |-