Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Multiplication
ine0
Next ⟩
mulneg1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ine0
Description:
The imaginary unit
_i
is not zero.
(Contributed by
NM
, 6-May-1999)
Ref
Expression
Assertion
ine0
⊢
i
≠
0
Proof
Step
Hyp
Ref
Expression
1
ax-1ne0
⊢
1
≠
0
2
1
neii
⊢
¬
1
=
0
3
oveq2
⊢
i
=
0
→
i
⁢
i
=
i
⋅
0
4
ax-icn
⊢
i
∈
ℂ
5
4
mul01i
⊢
i
⋅
0
=
0
6
3
5
eqtr2di
⊢
i
=
0
→
0
=
i
⁢
i
7
6
oveq1d
⊢
i
=
0
→
0
+
1
=
i
⁢
i
+
1
8
ax-1cn
⊢
1
∈
ℂ
9
8
addid2i
⊢
0
+
1
=
1
10
ax-i2m1
⊢
i
⁢
i
+
1
=
0
11
7
9
10
3eqtr3g
⊢
i
=
0
→
1
=
0
12
2
11
mto
⊢
¬
i
=
0
13
12
neir
⊢
i
≠
0