Metamath Proof Explorer


Theorem inegd

Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypothesis inegd.1 φ ψ
Assertion inegd φ ¬ ψ

Proof

Step Hyp Ref Expression
1 inegd.1 φ ψ
2 1 ex φ ψ
3 dfnot ¬ ψ ψ
4 2 3 sylibr φ ¬ ψ