Metamath Proof Explorer


Theorem inelfi

Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017)

Ref Expression
Assertion inelfi X V A X B X A B fi X

Proof

Step Hyp Ref Expression
1 prelpwi A X B X A B 𝒫 X
2 1 3adant1 X V A X B X A B 𝒫 X
3 prfi A B Fin
4 3 a1i X V A X B X A B Fin
5 2 4 elind X V A X B X A B 𝒫 X Fin
6 intprg A X B X A B = A B
7 6 3adant1 X V A X B X A B = A B
8 7 eqcomd X V A X B X A B = A B
9 inteq p = A B p = A B
10 9 rspceeqv A B 𝒫 X Fin A B = A B p 𝒫 X Fin A B = p
11 5 8 10 syl2anc X V A X B X p 𝒫 X Fin A B = p
12 inex1g A X A B V
13 12 3ad2ant2 X V A X B X A B V
14 simp1 X V A X B X X V
15 elfi A B V X V A B fi X p 𝒫 X Fin A B = p
16 13 14 15 syl2anc X V A X B X A B fi X p 𝒫 X Fin A B = p
17 11 16 mpbird X V A X B X A B fi X