Metamath Proof Explorer


Theorem inelfi

Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017)

Ref Expression
Assertion inelfi XVAXBXABfiX

Proof

Step Hyp Ref Expression
1 prelpwi AXBXAB𝒫X
2 1 3adant1 XVAXBXAB𝒫X
3 prfi ABFin
4 3 a1i XVAXBXABFin
5 2 4 elind XVAXBXAB𝒫XFin
6 intprg AXBXAB=AB
7 6 3adant1 XVAXBXAB=AB
8 7 eqcomd XVAXBXAB=AB
9 inteq p=ABp=AB
10 9 rspceeqv AB𝒫XFinAB=ABp𝒫XFinAB=p
11 5 8 10 syl2anc XVAXBXp𝒫XFinAB=p
12 inex1g AXABV
13 12 3ad2ant2 XVAXBXABV
14 simp1 XVAXBXXV
15 elfi ABVXVABfiXp𝒫XFinAB=p
16 13 14 15 syl2anc XVAXBXABfiXp𝒫XFinAB=p
17 11 16 mpbird XVAXBXABfiX