Metamath Proof Explorer


Theorem inelr

Description: The imaginary unit _i is not a real number. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion inelr ¬ i

Proof

Step Hyp Ref Expression
1 ine0 i 0
2 1 neii ¬ i = 0
3 0lt1 0 < 1
4 0re 0
5 1re 1
6 4 5 ltnsymi 0 < 1 ¬ 1 < 0
7 3 6 ax-mp ¬ 1 < 0
8 ixi i i = 1
9 5 renegcli 1
10 8 9 eqeltri i i
11 4 10 5 ltadd1i 0 < i i 0 + 1 < i i + 1
12 ax-1cn 1
13 12 addid2i 0 + 1 = 1
14 ax-i2m1 i i + 1 = 0
15 13 14 breq12i 0 + 1 < i i + 1 1 < 0
16 11 15 bitri 0 < i i 1 < 0
17 7 16 mtbir ¬ 0 < i i
18 msqgt0 i i 0 0 < i i
19 18 ex i i 0 0 < i i
20 19 necon1bd i ¬ 0 < i i i = 0
21 17 20 mpi i i = 0
22 2 21 mto ¬ i