Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Replacement
Theorems requiring subset and intersection existence
inex1g
Next ⟩
inex2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
inex1g
Description:
Closed-form, generalized Separation Scheme.
(Contributed by
NM
, 7-Apr-1995)
Ref
Expression
Assertion
inex1g
⊢
A
∈
V
→
A
∩
B
∈
V
Proof
Step
Hyp
Ref
Expression
1
ineq1
⊢
x
=
A
→
x
∩
B
=
A
∩
B
2
1
eleq1d
⊢
x
=
A
→
x
∩
B
∈
V
↔
A
∩
B
∈
V
3
vex
⊢
x
∈
V
4
3
inex1
⊢
x
∩
B
∈
V
5
2
4
vtoclg
⊢
A
∈
V
→
A
∩
B
∈
V