Metamath Proof Explorer


Theorem inf3lem1

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem1 A ω F A F suc A

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 fveq2 v = F v = F
6 suceq v = suc v = suc
7 6 fveq2d v = F suc v = F suc
8 5 7 sseq12d v = F v F suc v F F suc
9 fveq2 v = u F v = F u
10 suceq v = u suc v = suc u
11 10 fveq2d v = u F suc v = F suc u
12 9 11 sseq12d v = u F v F suc v F u F suc u
13 fveq2 v = suc u F v = F suc u
14 suceq v = suc u suc v = suc suc u
15 14 fveq2d v = suc u F suc v = F suc suc u
16 13 15 sseq12d v = suc u F v F suc v F suc u F suc suc u
17 fveq2 v = A F v = F A
18 suceq v = A suc v = suc A
19 18 fveq2d v = A F suc v = F suc A
20 17 19 sseq12d v = A F v F suc v F A F suc A
21 1 2 3 3 inf3lemb F =
22 0ss F suc
23 21 22 eqsstri F F suc
24 sstr2 v x F u F u F suc u v x F suc u
25 24 com12 F u F suc u v x F u v x F suc u
26 25 anim2d F u F suc u v x v x F u v x v x F suc u
27 vex u V
28 1 2 27 3 inf3lemc u ω F suc u = G F u
29 28 eleq2d u ω v F suc u v G F u
30 vex v V
31 fvex F u V
32 1 2 30 31 inf3lema v G F u v x v x F u
33 29 32 bitrdi u ω v F suc u v x v x F u
34 peano2b u ω suc u ω
35 27 sucex suc u V
36 1 2 35 3 inf3lemc suc u ω F suc suc u = G F suc u
37 34 36 sylbi u ω F suc suc u = G F suc u
38 37 eleq2d u ω v F suc suc u v G F suc u
39 fvex F suc u V
40 1 2 30 39 inf3lema v G F suc u v x v x F suc u
41 38 40 bitrdi u ω v F suc suc u v x v x F suc u
42 33 41 imbi12d u ω v F suc u v F suc suc u v x v x F u v x v x F suc u
43 26 42 syl5ibr u ω F u F suc u v F suc u v F suc suc u
44 43 imp u ω F u F suc u v F suc u v F suc suc u
45 44 ssrdv u ω F u F suc u F suc u F suc suc u
46 45 ex u ω F u F suc u F suc u F suc suc u
47 8 12 16 20 23 46 finds A ω F A F suc A