Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|
2 |
|
inf3lem.2 |
|
3 |
|
inf3lem.3 |
|
4 |
|
inf3lem.4 |
|
5 |
|
fveq2 |
|
6 |
|
suceq |
|
7 |
6
|
fveq2d |
|
8 |
5 7
|
sseq12d |
|
9 |
|
fveq2 |
|
10 |
|
suceq |
|
11 |
10
|
fveq2d |
|
12 |
9 11
|
sseq12d |
|
13 |
|
fveq2 |
|
14 |
|
suceq |
|
15 |
14
|
fveq2d |
|
16 |
13 15
|
sseq12d |
|
17 |
|
fveq2 |
|
18 |
|
suceq |
|
19 |
18
|
fveq2d |
|
20 |
17 19
|
sseq12d |
|
21 |
1 2 3 3
|
inf3lemb |
|
22 |
|
0ss |
|
23 |
21 22
|
eqsstri |
|
24 |
|
sstr2 |
|
25 |
24
|
com12 |
|
26 |
25
|
anim2d |
|
27 |
|
vex |
|
28 |
1 2 27 3
|
inf3lemc |
|
29 |
28
|
eleq2d |
|
30 |
|
vex |
|
31 |
|
fvex |
|
32 |
1 2 30 31
|
inf3lema |
|
33 |
29 32
|
bitrdi |
|
34 |
|
peano2b |
|
35 |
27
|
sucex |
|
36 |
1 2 35 3
|
inf3lemc |
|
37 |
34 36
|
sylbi |
|
38 |
37
|
eleq2d |
|
39 |
|
fvex |
|
40 |
1 2 30 39
|
inf3lema |
|
41 |
38 40
|
bitrdi |
|
42 |
33 41
|
imbi12d |
|
43 |
26 42
|
syl5ibr |
|
44 |
43
|
imp |
|
45 |
44
|
ssrdv |
|
46 |
45
|
ex |
|
47 |
8 12 16 20 23 46
|
finds |
|