| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|
| 2 |
|
inf3lem.2 |
|
| 3 |
|
inf3lem.3 |
|
| 4 |
|
inf3lem.4 |
|
| 5 |
|
fveq2 |
|
| 6 |
|
suceq |
|
| 7 |
6
|
fveq2d |
|
| 8 |
5 7
|
sseq12d |
|
| 9 |
|
fveq2 |
|
| 10 |
|
suceq |
|
| 11 |
10
|
fveq2d |
|
| 12 |
9 11
|
sseq12d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
suceq |
|
| 15 |
14
|
fveq2d |
|
| 16 |
13 15
|
sseq12d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
suceq |
|
| 19 |
18
|
fveq2d |
|
| 20 |
17 19
|
sseq12d |
|
| 21 |
1 2 3 3
|
inf3lemb |
|
| 22 |
|
0ss |
|
| 23 |
21 22
|
eqsstri |
|
| 24 |
|
sstr2 |
|
| 25 |
24
|
com12 |
|
| 26 |
25
|
anim2d |
|
| 27 |
|
vex |
|
| 28 |
1 2 27 3
|
inf3lemc |
|
| 29 |
28
|
eleq2d |
|
| 30 |
|
vex |
|
| 31 |
|
fvex |
|
| 32 |
1 2 30 31
|
inf3lema |
|
| 33 |
29 32
|
bitrdi |
|
| 34 |
|
peano2b |
|
| 35 |
27
|
sucex |
|
| 36 |
1 2 35 3
|
inf3lemc |
|
| 37 |
34 36
|
sylbi |
|
| 38 |
37
|
eleq2d |
|
| 39 |
|
fvex |
|
| 40 |
1 2 30 39
|
inf3lema |
|
| 41 |
38 40
|
bitrdi |
|
| 42 |
33 41
|
imbi12d |
|
| 43 |
26 42
|
imbitrrid |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
ssrdv |
|
| 46 |
45
|
ex |
|
| 47 |
8 12 16 20 23 46
|
finds |
|