| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|
| 2 |
|
inf3lem.2 |
|
| 3 |
|
inf3lem.3 |
|
| 4 |
|
inf3lem.4 |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
neeq1d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
neeq1d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
neeq1d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
neeq1d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
1 2 3 4
|
inf3lemb |
|
| 18 |
17
|
eqeq1i |
|
| 19 |
|
eqcom |
|
| 20 |
18 19
|
sylbb |
|
| 21 |
20
|
necon3i |
|
| 22 |
21
|
adantr |
|
| 23 |
|
vex |
|
| 24 |
1 2 23 4
|
inf3lemd |
|
| 25 |
|
df-pss |
|
| 26 |
|
pssnel |
|
| 27 |
25 26
|
sylbir |
|
| 28 |
|
ssel |
|
| 29 |
|
eluni |
|
| 30 |
28 29
|
imbitrdi |
|
| 31 |
|
eleq2 |
|
| 32 |
31
|
biimparc |
|
| 33 |
1 2 23 4
|
inf3lemc |
|
| 34 |
33
|
eleq2d |
|
| 35 |
|
elin |
|
| 36 |
|
vex |
|
| 37 |
|
fvex |
|
| 38 |
1 2 36 37
|
inf3lema |
|
| 39 |
38
|
simprbi |
|
| 40 |
39
|
sseld |
|
| 41 |
35 40
|
biimtrrid |
|
| 42 |
34 41
|
biimtrdi |
|
| 43 |
32 42
|
syl5 |
|
| 44 |
43
|
com23 |
|
| 45 |
44
|
exp5c |
|
| 46 |
45
|
com34 |
|
| 47 |
46
|
impd |
|
| 48 |
47
|
exlimdv |
|
| 49 |
30 48
|
sylan9r |
|
| 50 |
49
|
pm2.43d |
|
| 51 |
|
id |
|
| 52 |
51
|
necon3bd |
|
| 53 |
50 52
|
syl6 |
|
| 54 |
53
|
impd |
|
| 55 |
54
|
exlimdv |
|
| 56 |
27 55
|
syl5 |
|
| 57 |
24 56
|
sylani |
|
| 58 |
57
|
exp4b |
|
| 59 |
58
|
pm2.43a |
|
| 60 |
59
|
adantld |
|
| 61 |
60
|
a2d |
|
| 62 |
7 10 13 16 22 61
|
finds |
|
| 63 |
62
|
com12 |
|