Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|
2 |
|
inf3lem.2 |
|
3 |
|
inf3lem.3 |
|
4 |
|
inf3lem.4 |
|
5 |
1 2 3 4
|
inf3lemd |
|
6 |
1 2 3 4
|
inf3lem2 |
|
7 |
6
|
com12 |
|
8 |
|
pssdifn0 |
|
9 |
5 7 8
|
syl6an |
|
10 |
|
vex |
|
11 |
10
|
difexi |
|
12 |
|
zfreg |
|
13 |
11 12
|
mpan |
|
14 |
|
eldifi |
|
15 |
|
inssdif0 |
|
16 |
15
|
biimpri |
|
17 |
14 16
|
anim12i |
|
18 |
|
vex |
|
19 |
|
fvex |
|
20 |
1 2 18 19
|
inf3lema |
|
21 |
17 20
|
sylibr |
|
22 |
1 2 3 4
|
inf3lemc |
|
23 |
22
|
eleq2d |
|
24 |
21 23
|
syl5ibr |
|
25 |
|
eldifn |
|
26 |
25
|
adantr |
|
27 |
24 26
|
jca2 |
|
28 |
|
eleq2 |
|
29 |
28
|
biimprd |
|
30 |
|
iman |
|
31 |
29 30
|
sylib |
|
32 |
31
|
necon2ai |
|
33 |
27 32
|
syl6 |
|
34 |
33
|
expd |
|
35 |
34
|
rexlimdv |
|
36 |
13 35
|
syl5 |
|
37 |
9 36
|
syldc |
|