| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|
| 2 |
|
inf3lem.2 |
|
| 3 |
|
inf3lem.3 |
|
| 4 |
|
inf3lem.4 |
|
| 5 |
1 2 3 4
|
inf3lemd |
|
| 6 |
1 2 3 4
|
inf3lem2 |
|
| 7 |
6
|
com12 |
|
| 8 |
|
pssdifn0 |
|
| 9 |
5 7 8
|
syl6an |
|
| 10 |
|
vex |
|
| 11 |
10
|
difexi |
|
| 12 |
|
zfreg |
|
| 13 |
11 12
|
mpan |
|
| 14 |
|
eldifi |
|
| 15 |
|
inssdif0 |
|
| 16 |
15
|
biimpri |
|
| 17 |
14 16
|
anim12i |
|
| 18 |
|
vex |
|
| 19 |
|
fvex |
|
| 20 |
1 2 18 19
|
inf3lema |
|
| 21 |
17 20
|
sylibr |
|
| 22 |
1 2 3 4
|
inf3lemc |
|
| 23 |
22
|
eleq2d |
|
| 24 |
21 23
|
imbitrrid |
|
| 25 |
|
eldifn |
|
| 26 |
25
|
adantr |
|
| 27 |
24 26
|
jca2 |
|
| 28 |
|
eleq2 |
|
| 29 |
28
|
biimprd |
|
| 30 |
|
iman |
|
| 31 |
29 30
|
sylib |
|
| 32 |
31
|
necon2ai |
|
| 33 |
27 32
|
syl6 |
|
| 34 |
33
|
expd |
|
| 35 |
34
|
rexlimdv |
|
| 36 |
13 35
|
syl5 |
|
| 37 |
9 36
|
syldc |
|