Metamath Proof Explorer


Theorem inf3lem4

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem4 x x x A ω F A F suc A

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 1 2 3 4 inf3lem1 A ω F A F suc A
6 5 a1i x x x A ω F A F suc A
7 1 2 3 4 inf3lem3 x x x A ω F A F suc A
8 6 7 jcad x x x A ω F A F suc A F A F suc A
9 df-pss F A F suc A F A F suc A F A F suc A
10 8 9 syl6ibr x x x A ω F A F suc A