| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 |  | 
						
							| 2 |  | inf3lem.2 |  | 
						
							| 3 |  | inf3lem.3 |  | 
						
							| 4 |  | inf3lem.4 |  | 
						
							| 5 |  | vex |  | 
						
							| 6 |  | vex |  | 
						
							| 7 | 1 2 5 6 | inf3lem5 |  | 
						
							| 8 |  | dfpss2 |  | 
						
							| 9 | 8 | simprbi |  | 
						
							| 10 | 7 9 | syl6 |  | 
						
							| 11 | 10 | expdimp |  | 
						
							| 12 | 11 | adantrl |  | 
						
							| 13 | 1 2 6 5 | inf3lem5 |  | 
						
							| 14 |  | dfpss2 |  | 
						
							| 15 | 14 | simprbi |  | 
						
							| 16 |  | eqcom |  | 
						
							| 17 | 15 16 | sylnib |  | 
						
							| 18 | 13 17 | syl6 |  | 
						
							| 19 | 18 | expdimp |  | 
						
							| 20 | 19 | adantrr |  | 
						
							| 21 | 12 20 | jaod |  | 
						
							| 22 | 21 | con2d |  | 
						
							| 23 |  | nnord |  | 
						
							| 24 |  | nnord |  | 
						
							| 25 |  | ordtri3 |  | 
						
							| 26 | 23 24 25 | syl2an |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 22 27 | sylibrd |  | 
						
							| 29 | 28 | ralrimivva |  | 
						
							| 30 |  | frfnom |  | 
						
							| 31 |  | fneq1 |  | 
						
							| 32 | 30 31 | mpbiri |  | 
						
							| 33 |  | fvelrnb |  | 
						
							| 34 | 1 2 6 4 | inf3lemd |  | 
						
							| 35 |  | fvex |  | 
						
							| 36 | 35 | elpw |  | 
						
							| 37 | 34 36 | sylibr |  | 
						
							| 38 |  | eleq1 |  | 
						
							| 39 | 37 38 | syl5ibcom |  | 
						
							| 40 | 39 | rexlimiv |  | 
						
							| 41 | 33 40 | biimtrdi |  | 
						
							| 42 | 41 | ssrdv |  | 
						
							| 43 | 42 | ancli |  | 
						
							| 44 | 2 32 43 | mp2b |  | 
						
							| 45 |  | df-f |  | 
						
							| 46 | 44 45 | mpbir |  | 
						
							| 47 | 29 46 | jctil |  | 
						
							| 48 |  | dff13 |  | 
						
							| 49 | 47 48 | sylibr |  |