Metamath Proof Explorer


Theorem inf3lem7

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex . (Contributed by NM, 29-Oct-1996) (Proof shortened by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem7 x x x ω V

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 1 2 3 4 inf3lem6 x x x F : ω 1-1 𝒫 x
6 vpwex 𝒫 x V
7 f1dmex F : ω 1-1 𝒫 x 𝒫 x V ω V
8 5 6 7 sylancl x x x ω V