Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Axiom of Infinity equivalents
inf3lem7
Metamath Proof Explorer
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See
inf3 for detailed description. In the proof, we invoke the Axiom of
Replacement in the form of f1dmex . (Contributed by NM , 29-Oct-1996)
(Proof shortened by Mario Carneiro , 19-Jan-2013)
Ref
Expression
Hypotheses
inf3lem.1
⊢ G = y ∈ V ⟼ w ∈ x | w ∩ x ⊆ y
inf3lem.2
⊢ F = rec ⁡ G ∅ ↾ ω
inf3lem.3
⊢ A ∈ V
inf3lem.4
⊢ B ∈ V
Assertion
inf3lem7
⊢ x ≠ ∅ ∧ x ⊆ ⋃ x → ω ∈ V
Proof
Step
Hyp
Ref
Expression
1
inf3lem.1
⊢ G = y ∈ V ⟼ w ∈ x | w ∩ x ⊆ y
2
inf3lem.2
⊢ F = rec ⁡ G ∅ ↾ ω
3
inf3lem.3
⊢ A ∈ V
4
inf3lem.4
⊢ B ∈ V
5
1 2 3 4
inf3lem6
⊢ x ≠ ∅ ∧ x ⊆ ⋃ x → F : ω ⟶ 1-1 𝒫 x
6
vpwex
⊢ 𝒫 x ∈ V
7
f1dmex
⊢ F : ω ⟶ 1-1 𝒫 x ∧ 𝒫 x ∈ V → ω ∈ V
8
5 6 7
sylancl
⊢ x ≠ ∅ ∧ x ⊆ ⋃ x → ω ∈ V