Metamath Proof Explorer


Theorem inf3lemc

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lemc A ω F suc A = G F A

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 frsuc A ω rec G ω suc A = G rec G ω A
6 2 fveq1i F suc A = rec G ω suc A
7 2 fveq1i F A = rec G ω A
8 7 fveq2i G F A = G rec G ω A
9 5 6 8 3eqtr4g A ω F suc A = G F A