Metamath Proof Explorer


Theorem infcl

Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φ R Or A
infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
Assertion infcl φ sup B A R A

Proof

Step Hyp Ref Expression
1 infcl.1 φ R Or A
2 infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
3 df-inf sup B A R = sup B A R -1
4 cnvso R Or A R -1 Or A
5 1 4 sylib φ R -1 Or A
6 1 2 infcllem φ x A y B ¬ x R -1 y y A y R -1 x z B y R -1 z
7 5 6 supcl φ sup B A R -1 A
8 3 7 eqeltrid φ sup B A R A