Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infcl.1 | ||
infcl.2 | |||
Assertion | infcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcl.1 | ||
2 | infcl.2 | ||
3 | df-inf | ||
4 | cnvso | ||
5 | 1 4 | sylib | |
6 | 1 2 | infcllem | |
7 | 5 6 | supcl | |
8 | 3 7 | eqeltrid |