Metamath Proof Explorer


Theorem infcvgaux2i

Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)

Ref Expression
Hypotheses infcvg.1 R = x | y X x = A
infcvg.2 y X A
infcvg.3 Z X
infcvg.4 z w R w z
infcvg.5a S = sup R <
infcvg.13 y = C A = B
Assertion infcvgaux2i C X S B

Proof

Step Hyp Ref Expression
1 infcvg.1 R = x | y X x = A
2 infcvg.2 y X A
3 infcvg.3 Z X
4 infcvg.4 z w R w z
5 infcvg.5a S = sup R <
6 infcvg.13 y = C A = B
7 eqid B = B
8 6 negeqd y = C A = B
9 8 rspceeqv C X B = B y X B = A
10 7 9 mpan2 C X y X B = A
11 negex B V
12 eqeq1 x = B x = A B = A
13 12 rexbidv x = B y X x = A y X B = A
14 11 13 1 elab2 B R y X B = A
15 10 14 sylibr C X B R
16 1 2 3 4 infcvgaux1i R R z w R w z
17 16 suprubii B R B sup R <
18 15 17 syl C X B sup R <
19 6 eleq1d y = C A B
20 19 2 vtoclga C X B
21 16 suprclii sup R <
22 lenegcon1 B sup R < B sup R < sup R < B
23 20 21 22 sylancl C X B sup R < sup R < B
24 18 23 mpbid C X sup R < B
25 5 24 eqbrtrid C X S B