| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
difss |
|
| 3 |
|
ssdomg |
|
| 4 |
1 2 3
|
mpisyl |
|
| 5 |
|
sdomdom |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
numdom |
|
| 8 |
1 6 7
|
syl2anc |
|
| 9 |
|
unnum |
|
| 10 |
1 8 9
|
syl2anc |
|
| 11 |
|
ssun1 |
|
| 12 |
|
ssdomg |
|
| 13 |
10 11 12
|
mpisyl |
|
| 14 |
|
undif1 |
|
| 15 |
|
ssnum |
|
| 16 |
1 2 15
|
sylancl |
|
| 17 |
|
undjudom |
|
| 18 |
16 8 17
|
syl2anc |
|
| 19 |
14 18
|
eqbrtrrid |
|
| 20 |
|
domtr |
|
| 21 |
13 19 20
|
syl2anc |
|
| 22 |
|
simp3 |
|
| 23 |
|
sdomdom |
|
| 24 |
|
relsdom |
|
| 25 |
24
|
brrelex2i |
|
| 26 |
|
djudom1 |
|
| 27 |
23 25 26
|
syl2anc |
|
| 28 |
|
domtr |
|
| 29 |
28
|
ex |
|
| 30 |
21 29
|
syl |
|
| 31 |
|
simp2 |
|
| 32 |
|
domtr |
|
| 33 |
32
|
ex |
|
| 34 |
31 33
|
syl |
|
| 35 |
|
djuinf |
|
| 36 |
35
|
biimpri |
|
| 37 |
|
domrefg |
|
| 38 |
|
infdjuabs |
|
| 39 |
38
|
3com23 |
|
| 40 |
39
|
3expia |
|
| 41 |
37 40
|
mpdan |
|
| 42 |
8 36 41
|
syl2im |
|
| 43 |
34 42
|
syld |
|
| 44 |
|
domen2 |
|
| 45 |
44
|
biimpcd |
|
| 46 |
43 45
|
sylcom |
|
| 47 |
30 46
|
syld |
|
| 48 |
|
domnsym |
|
| 49 |
27 47 48
|
syl56 |
|
| 50 |
22 49
|
mt2d |
|
| 51 |
|
domtri2 |
|
| 52 |
8 16 51
|
syl2anc |
|
| 53 |
50 52
|
mpbird |
|
| 54 |
1
|
difexd |
|
| 55 |
|
djudom2 |
|
| 56 |
53 54 55
|
syl2anc |
|
| 57 |
|
domtr |
|
| 58 |
21 56 57
|
syl2anc |
|
| 59 |
|
domtr |
|
| 60 |
31 58 59
|
syl2anc |
|
| 61 |
|
djuinf |
|
| 62 |
60 61
|
sylibr |
|
| 63 |
|
domrefg |
|
| 64 |
16 63
|
syl |
|
| 65 |
|
infdjuabs |
|
| 66 |
16 62 64 65
|
syl3anc |
|
| 67 |
|
domentr |
|
| 68 |
58 66 67
|
syl2anc |
|
| 69 |
|
sbth |
|
| 70 |
4 68 69
|
syl2anc |
|