Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
difss |
|
3 |
|
ssdomg |
|
4 |
1 2 3
|
mpisyl |
|
5 |
|
sdomdom |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
numdom |
|
8 |
1 6 7
|
syl2anc |
|
9 |
|
unnum |
|
10 |
1 8 9
|
syl2anc |
|
11 |
|
ssun1 |
|
12 |
|
ssdomg |
|
13 |
10 11 12
|
mpisyl |
|
14 |
|
undif1 |
|
15 |
|
ssnum |
|
16 |
1 2 15
|
sylancl |
|
17 |
|
undjudom |
|
18 |
16 8 17
|
syl2anc |
|
19 |
14 18
|
eqbrtrrid |
|
20 |
|
domtr |
|
21 |
13 19 20
|
syl2anc |
|
22 |
|
simp3 |
|
23 |
|
sdomdom |
|
24 |
|
relsdom |
|
25 |
24
|
brrelex2i |
|
26 |
|
djudom1 |
|
27 |
23 25 26
|
syl2anc |
|
28 |
|
domtr |
|
29 |
28
|
ex |
|
30 |
21 29
|
syl |
|
31 |
|
simp2 |
|
32 |
|
domtr |
|
33 |
32
|
ex |
|
34 |
31 33
|
syl |
|
35 |
|
djuinf |
|
36 |
35
|
biimpri |
|
37 |
|
domrefg |
|
38 |
|
infdjuabs |
|
39 |
38
|
3com23 |
|
40 |
39
|
3expia |
|
41 |
37 40
|
mpdan |
|
42 |
8 36 41
|
syl2im |
|
43 |
34 42
|
syld |
|
44 |
|
domen2 |
|
45 |
44
|
biimpcd |
|
46 |
43 45
|
sylcom |
|
47 |
30 46
|
syld |
|
48 |
|
domnsym |
|
49 |
27 47 48
|
syl56 |
|
50 |
22 49
|
mt2d |
|
51 |
|
domtri2 |
|
52 |
8 16 51
|
syl2anc |
|
53 |
50 52
|
mpbird |
|
54 |
1
|
difexd |
|
55 |
|
djudom2 |
|
56 |
53 54 55
|
syl2anc |
|
57 |
|
domtr |
|
58 |
21 56 57
|
syl2anc |
|
59 |
|
domtr |
|
60 |
31 58 59
|
syl2anc |
|
61 |
|
djuinf |
|
62 |
60 61
|
sylibr |
|
63 |
|
domrefg |
|
64 |
16 63
|
syl |
|
65 |
|
infdjuabs |
|
66 |
16 62 64 65
|
syl3anc |
|
67 |
|
domentr |
|
68 |
58 66 67
|
syl2anc |
|
69 |
|
sbth |
|
70 |
4 68 69
|
syl2anc |
|