Metamath Proof Explorer


Theorem infdif

Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in Enderton p. 164. (Contributed by NM, 22-Oct-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdif A dom card ω A B A A B A

Proof

Step Hyp Ref Expression
1 simp1 A dom card ω A B A A dom card
2 difss A B A
3 ssdomg A dom card A B A A B A
4 1 2 3 mpisyl A dom card ω A B A A B A
5 sdomdom B A B A
6 5 3ad2ant3 A dom card ω A B A B A
7 numdom A dom card B A B dom card
8 1 6 7 syl2anc A dom card ω A B A B dom card
9 unnum A dom card B dom card A B dom card
10 1 8 9 syl2anc A dom card ω A B A A B dom card
11 ssun1 A A B
12 ssdomg A B dom card A A B A A B
13 10 11 12 mpisyl A dom card ω A B A A A B
14 undif1 A B B = A B
15 ssnum A dom card A B A A B dom card
16 1 2 15 sylancl A dom card ω A B A A B dom card
17 undjudom A B dom card B dom card A B B A B ⊔︀ B
18 16 8 17 syl2anc A dom card ω A B A A B B A B ⊔︀ B
19 14 18 eqbrtrrid A dom card ω A B A A B A B ⊔︀ B
20 domtr A A B A B A B ⊔︀ B A A B ⊔︀ B
21 13 19 20 syl2anc A dom card ω A B A A A B ⊔︀ B
22 simp3 A dom card ω A B A B A
23 sdomdom A B B A B B
24 relsdom Rel
25 24 brrelex2i A B B B V
26 djudom1 A B B B V A B ⊔︀ B B ⊔︀ B
27 23 25 26 syl2anc A B B A B ⊔︀ B B ⊔︀ B
28 domtr A A B ⊔︀ B A B ⊔︀ B B ⊔︀ B A B ⊔︀ B
29 28 ex A A B ⊔︀ B A B ⊔︀ B B ⊔︀ B A B ⊔︀ B
30 21 29 syl A dom card ω A B A A B ⊔︀ B B ⊔︀ B A B ⊔︀ B
31 simp2 A dom card ω A B A ω A
32 domtr ω A A B ⊔︀ B ω B ⊔︀ B
33 32 ex ω A A B ⊔︀ B ω B ⊔︀ B
34 31 33 syl A dom card ω A B A A B ⊔︀ B ω B ⊔︀ B
35 djuinf ω B ω B ⊔︀ B
36 35 biimpri ω B ⊔︀ B ω B
37 domrefg B dom card B B
38 infdjuabs B dom card ω B B B B ⊔︀ B B
39 38 3com23 B dom card B B ω B B ⊔︀ B B
40 39 3expia B dom card B B ω B B ⊔︀ B B
41 37 40 mpdan B dom card ω B B ⊔︀ B B
42 8 36 41 syl2im A dom card ω A B A ω B ⊔︀ B B ⊔︀ B B
43 34 42 syld A dom card ω A B A A B ⊔︀ B B ⊔︀ B B
44 domen2 B ⊔︀ B B A B ⊔︀ B A B
45 44 biimpcd A B ⊔︀ B B ⊔︀ B B A B
46 43 45 sylcom A dom card ω A B A A B ⊔︀ B A B
47 30 46 syld A dom card ω A B A A B ⊔︀ B B ⊔︀ B A B
48 domnsym A B ¬ B A
49 27 47 48 syl56 A dom card ω A B A A B B ¬ B A
50 22 49 mt2d A dom card ω A B A ¬ A B B
51 domtri2 B dom card A B dom card B A B ¬ A B B
52 8 16 51 syl2anc A dom card ω A B A B A B ¬ A B B
53 50 52 mpbird A dom card ω A B A B A B
54 1 difexd A dom card ω A B A A B V
55 djudom2 B A B A B V A B ⊔︀ B A B ⊔︀ A B
56 53 54 55 syl2anc A dom card ω A B A A B ⊔︀ B A B ⊔︀ A B
57 domtr A A B ⊔︀ B A B ⊔︀ B A B ⊔︀ A B A A B ⊔︀ A B
58 21 56 57 syl2anc A dom card ω A B A A A B ⊔︀ A B
59 domtr ω A A A B ⊔︀ A B ω A B ⊔︀ A B
60 31 58 59 syl2anc A dom card ω A B A ω A B ⊔︀ A B
61 djuinf ω A B ω A B ⊔︀ A B
62 60 61 sylibr A dom card ω A B A ω A B
63 domrefg A B dom card A B A B
64 16 63 syl A dom card ω A B A A B A B
65 infdjuabs A B dom card ω A B A B A B A B ⊔︀ A B A B
66 16 62 64 65 syl3anc A dom card ω A B A A B ⊔︀ A B A B
67 domentr A A B ⊔︀ A B A B ⊔︀ A B A B A A B
68 58 66 67 syl2anc A dom card ω A B A A A B
69 sbth A B A A A B A B A
70 4 68 69 syl2anc A dom card ω A B A A B A