Metamath Proof Explorer


Theorem infdiffi

Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infdiffi ω A B Fin A B A

Proof

Step Hyp Ref Expression
1 difeq2 x = A x = A
2 dif0 A = A
3 1 2 eqtrdi x = A x = A
4 3 breq1d x = A x A A A
5 4 imbi2d x = ω A A x A ω A A A
6 difeq2 x = y A x = A y
7 6 breq1d x = y A x A A y A
8 7 imbi2d x = y ω A A x A ω A A y A
9 difeq2 x = y z A x = A y z
10 difun1 A y z = A y z
11 9 10 eqtrdi x = y z A x = A y z
12 11 breq1d x = y z A x A A y z A
13 12 imbi2d x = y z ω A A x A ω A A y z A
14 difeq2 x = B A x = A B
15 14 breq1d x = B A x A A B A
16 15 imbi2d x = B ω A A x A ω A A B A
17 reldom Rel
18 17 brrelex2i ω A A V
19 enrefg A V A A
20 18 19 syl ω A A A
21 domen2 A y A ω A y ω A
22 21 biimparc ω A A y A ω A y
23 infdifsn ω A y A y z A y
24 22 23 syl ω A A y A A y z A y
25 entr A y z A y A y A A y z A
26 24 25 sylancom ω A A y A A y z A
27 26 ex ω A A y A A y z A
28 27 a2i ω A A y A ω A A y z A
29 28 a1i y Fin ω A A y A ω A A y z A
30 5 8 13 16 20 29 findcard2 B Fin ω A A B A
31 30 impcom ω A B Fin A B A