Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|
2 |
1
|
adantr |
|
3 |
|
reldom |
|
4 |
3
|
brrelex2i |
|
5 |
4
|
ad2antrr |
|
6 |
|
simplr |
|
7 |
|
f1f |
|
8 |
7
|
adantl |
|
9 |
|
peano1 |
|
10 |
|
ffvelrn |
|
11 |
8 9 10
|
sylancl |
|
12 |
|
difsnen |
|
13 |
5 6 11 12
|
syl3anc |
|
14 |
|
vex |
|
15 |
|
f1f1orn |
|
16 |
15
|
adantl |
|
17 |
|
f1oen3g |
|
18 |
14 16 17
|
sylancr |
|
19 |
18
|
ensymd |
|
20 |
3
|
brrelex1i |
|
21 |
20
|
ad2antrr |
|
22 |
|
limom |
|
23 |
22
|
limenpsi |
|
24 |
21 23
|
syl |
|
25 |
14
|
resex |
|
26 |
|
simpr |
|
27 |
|
difss |
|
28 |
|
f1ores |
|
29 |
26 27 28
|
sylancl |
|
30 |
|
f1oen3g |
|
31 |
25 29 30
|
sylancr |
|
32 |
|
f1orn |
|
33 |
32
|
simprbi |
|
34 |
|
imadif |
|
35 |
16 33 34
|
3syl |
|
36 |
|
f1fn |
|
37 |
36
|
adantl |
|
38 |
|
fnima |
|
39 |
37 38
|
syl |
|
40 |
|
fnsnfv |
|
41 |
37 9 40
|
sylancl |
|
42 |
41
|
eqcomd |
|
43 |
39 42
|
difeq12d |
|
44 |
35 43
|
eqtrd |
|
45 |
31 44
|
breqtrd |
|
46 |
|
entr |
|
47 |
24 45 46
|
syl2anc |
|
48 |
|
entr |
|
49 |
19 47 48
|
syl2anc |
|
50 |
|
difexg |
|
51 |
|
enrefg |
|
52 |
5 50 51
|
3syl |
|
53 |
|
disjdif |
|
54 |
53
|
a1i |
|
55 |
|
difss |
|
56 |
|
ssrin |
|
57 |
55 56
|
ax-mp |
|
58 |
|
sseq0 |
|
59 |
57 53 58
|
mp2an |
|
60 |
59
|
a1i |
|
61 |
|
unen |
|
62 |
49 52 54 60 61
|
syl22anc |
|
63 |
8
|
frnd |
|
64 |
|
undif |
|
65 |
63 64
|
sylib |
|
66 |
|
uncom |
|
67 |
|
eldifn |
|
68 |
|
fnfvelrn |
|
69 |
37 9 68
|
sylancl |
|
70 |
67 69
|
nsyl3 |
|
71 |
|
disjsn |
|
72 |
70 71
|
sylibr |
|
73 |
|
undif4 |
|
74 |
72 73
|
syl |
|
75 |
|
uncom |
|
76 |
75 65
|
eqtrid |
|
77 |
76
|
difeq1d |
|
78 |
74 77
|
eqtrd |
|
79 |
66 78
|
eqtrid |
|
80 |
62 65 79
|
3brtr3d |
|
81 |
80
|
ensymd |
|
82 |
|
entr |
|
83 |
13 81 82
|
syl2anc |
|
84 |
2 83
|
exlimddv |
|
85 |
|
difsn |
|
86 |
85
|
adantl |
|
87 |
|
enrefg |
|
88 |
4 87
|
syl |
|
89 |
88
|
adantr |
|
90 |
86 89
|
eqbrtrd |
|
91 |
84 90
|
pm2.61dan |
|