Metamath Proof Explorer


Theorem infdju

Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdju A dom card B dom card ω A A ⊔︀ B A B

Proof

Step Hyp Ref Expression
1 unnum A dom card B dom card A B dom card
2 1 3adant3 A dom card B dom card ω A A B dom card
3 ssun2 B A B
4 ssdomg A B dom card B A B B A B
5 2 3 4 mpisyl A dom card B dom card ω A B A B
6 simp1 A dom card B dom card ω A A dom card
7 djudom2 B A B A dom card A ⊔︀ B A ⊔︀ A B
8 5 6 7 syl2anc A dom card B dom card ω A A ⊔︀ B A ⊔︀ A B
9 djucomen A dom card A B dom card A ⊔︀ A B A B ⊔︀ A
10 6 2 9 syl2anc A dom card B dom card ω A A ⊔︀ A B A B ⊔︀ A
11 domentr A ⊔︀ B A ⊔︀ A B A ⊔︀ A B A B ⊔︀ A A ⊔︀ B A B ⊔︀ A
12 8 10 11 syl2anc A dom card B dom card ω A A ⊔︀ B A B ⊔︀ A
13 simp3 A dom card B dom card ω A ω A
14 ssun1 A A B
15 ssdomg A B dom card A A B A A B
16 2 14 15 mpisyl A dom card B dom card ω A A A B
17 domtr ω A A A B ω A B
18 13 16 17 syl2anc A dom card B dom card ω A ω A B
19 infdjuabs A B dom card ω A B A A B A B ⊔︀ A A B
20 2 18 16 19 syl3anc A dom card B dom card ω A A B ⊔︀ A A B
21 domentr A ⊔︀ B A B ⊔︀ A A B ⊔︀ A A B A ⊔︀ B A B
22 12 20 21 syl2anc A dom card B dom card ω A A ⊔︀ B A B
23 undjudom A dom card B dom card A B A ⊔︀ B
24 23 3adant3 A dom card B dom card ω A A B A ⊔︀ B
25 sbth A ⊔︀ B A B A B A ⊔︀ B A ⊔︀ B A B
26 22 24 25 syl2anc A dom card B dom card ω A A ⊔︀ B A B