Metamath Proof Explorer


Theorem infdju1

Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion infdju1 ω A A ⊔︀ 1 𝑜 A

Proof

Step Hyp Ref Expression
1 difun2 × A 1 𝑜 × 1 𝑜 1 𝑜 × 1 𝑜 = × A 1 𝑜 × 1 𝑜
2 df-dju A ⊔︀ 1 𝑜 = × A 1 𝑜 × 1 𝑜
3 df1o2 1 𝑜 =
4 3 xpeq2i 1 𝑜 × 1 𝑜 = 1 𝑜 ×
5 1oex 1 𝑜 V
6 0ex V
7 5 6 xpsn 1 𝑜 × = 1 𝑜
8 4 7 eqtr2i 1 𝑜 = 1 𝑜 × 1 𝑜
9 2 8 difeq12i A ⊔︀ 1 𝑜 1 𝑜 = × A 1 𝑜 × 1 𝑜 1 𝑜 × 1 𝑜
10 xp01disjl × A 1 𝑜 × 1 𝑜 =
11 disj3 × A 1 𝑜 × 1 𝑜 = × A = × A 1 𝑜 × 1 𝑜
12 10 11 mpbi × A = × A 1 𝑜 × 1 𝑜
13 1 9 12 3eqtr4i A ⊔︀ 1 𝑜 1 𝑜 = × A
14 reldom Rel
15 14 brrelex2i ω A A V
16 1on 1 𝑜 On
17 djudoml A V 1 𝑜 On A A ⊔︀ 1 𝑜
18 15 16 17 sylancl ω A A A ⊔︀ 1 𝑜
19 domtr ω A A A ⊔︀ 1 𝑜 ω A ⊔︀ 1 𝑜
20 18 19 mpdan ω A ω A ⊔︀ 1 𝑜
21 infdifsn ω A ⊔︀ 1 𝑜 A ⊔︀ 1 𝑜 1 𝑜 A ⊔︀ 1 𝑜
22 20 21 syl ω A A ⊔︀ 1 𝑜 1 𝑜 A ⊔︀ 1 𝑜
23 13 22 eqbrtrrid ω A × A A ⊔︀ 1 𝑜
24 23 ensymd ω A A ⊔︀ 1 𝑜 × A
25 xpsnen2g V A V × A A
26 6 15 25 sylancr ω A × A A
27 entr A ⊔︀ 1 𝑜 × A × A A A ⊔︀ 1 𝑜 A
28 24 26 27 syl2anc ω A A ⊔︀ 1 𝑜 A