Metamath Proof Explorer


Theorem infdjuabs

Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdjuabs A dom card ω A B A A ⊔︀ B A

Proof

Step Hyp Ref Expression
1 simp3 A dom card ω A B A B A
2 reldom Rel
3 2 brrelex2i B A A V
4 djudom2 B A A V A ⊔︀ B A ⊔︀ A
5 1 3 4 syl2anc2 A dom card ω A B A A ⊔︀ B A ⊔︀ A
6 xp2dju 2 𝑜 × A = A ⊔︀ A
7 5 6 breqtrrdi A dom card ω A B A A ⊔︀ B 2 𝑜 × A
8 simp1 A dom card ω A B A A dom card
9 2onn 2 𝑜 ω
10 nnsdom 2 𝑜 ω 2 𝑜 ω
11 sdomdom 2 𝑜 ω 2 𝑜 ω
12 9 10 11 mp2b 2 𝑜 ω
13 simp2 A dom card ω A B A ω A
14 domtr 2 𝑜 ω ω A 2 𝑜 A
15 12 13 14 sylancr A dom card ω A B A 2 𝑜 A
16 xpdom1g A dom card 2 𝑜 A 2 𝑜 × A A × A
17 8 15 16 syl2anc A dom card ω A B A 2 𝑜 × A A × A
18 domtr A ⊔︀ B 2 𝑜 × A 2 𝑜 × A A × A A ⊔︀ B A × A
19 7 17 18 syl2anc A dom card ω A B A A ⊔︀ B A × A
20 infxpidm2 A dom card ω A A × A A
21 20 3adant3 A dom card ω A B A A × A A
22 domentr A ⊔︀ B A × A A × A A A ⊔︀ B A
23 19 21 22 syl2anc A dom card ω A B A A ⊔︀ B A
24 2 brrelex1i B A B V
25 24 3ad2ant3 A dom card ω A B A B V
26 djudoml A dom card B V A A ⊔︀ B
27 8 25 26 syl2anc A dom card ω A B A A A ⊔︀ B
28 sbth A ⊔︀ B A A A ⊔︀ B A ⊔︀ B A
29 23 27 28 syl2anc A dom card ω A B A A ⊔︀ B A