Metamath Proof Explorer


Theorem infeq1i

Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infeq1i.1 B = C
Assertion infeq1i sup B A R = sup C A R

Proof

Step Hyp Ref Expression
1 infeq1i.1 B = C
2 infeq1 B = C sup B A R = sup C A R
3 1 2 ax-mp sup B A R = sup C A R