Metamath Proof Explorer


Theorem infeq3

Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Assertion infeq3 R = S inf A B R = inf A B S

Proof

Step Hyp Ref Expression
1 cnveq R = S R -1 = S -1
2 supeq3 R -1 = S -1 sup A B R -1 = sup A B S -1
3 1 2 syl R = S sup A B R -1 = sup A B S -1
4 df-inf inf A B R = sup A B R -1
5 df-inf inf A B S = sup A B S -1
6 3 4 5 3eqtr4g R = S inf A B R = inf A B S