Metamath Proof Explorer


Theorem infeq5i

Description: Half of infeq5 . (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion infeq5i ω V x x x

Proof

Step Hyp Ref Expression
1 difexg ω V ω V
2 0ex V
3 2 snid
4 disj4 ω = ¬ ω ω
5 disj3 ω = ω = ω
6 4 5 bitr3i ¬ ω ω ω = ω
7 peano1 ω
8 eleq2 ω = ω ω ω
9 7 8 mpbii ω = ω ω
10 9 eldifbd ω = ω ¬
11 6 10 sylbi ¬ ω ω ¬
12 3 11 mt4 ω ω
13 unidif0 ω = ω
14 limom Lim ω
15 limuni Lim ω ω = ω
16 14 15 ax-mp ω = ω
17 13 16 eqtr4i ω = ω
18 17 psseq2i ω ω ω ω
19 12 18 mpbir ω ω
20 psseq1 x = ω x x ω x
21 unieq x = ω x = ω
22 21 psseq2d x = ω ω x ω ω
23 20 22 bitrd x = ω x x ω ω
24 23 spcegv ω V ω ω x x x
25 1 19 24 mpisyl ω V x x x