Metamath Proof Explorer


Theorem inffien

Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion inffien A dom card ω A fi A A

Proof

Step Hyp Ref Expression
1 infpwfien A dom card ω A 𝒫 A Fin A
2 relen Rel
3 2 brrelex1i 𝒫 A Fin A 𝒫 A Fin V
4 1 3 syl A dom card ω A 𝒫 A Fin V
5 difss 𝒫 A Fin 𝒫 A Fin
6 ssdomg 𝒫 A Fin V 𝒫 A Fin 𝒫 A Fin 𝒫 A Fin 𝒫 A Fin
7 4 5 6 mpisyl A dom card ω A 𝒫 A Fin 𝒫 A Fin
8 domentr 𝒫 A Fin 𝒫 A Fin 𝒫 A Fin A 𝒫 A Fin A
9 7 1 8 syl2anc A dom card ω A 𝒫 A Fin A
10 numdom A dom card 𝒫 A Fin A 𝒫 A Fin dom card
11 9 10 syldan A dom card ω A 𝒫 A Fin dom card
12 eqid x 𝒫 A Fin x = x 𝒫 A Fin x
13 12 fifo A dom card x 𝒫 A Fin x : 𝒫 A Fin onto fi A
14 13 adantr A dom card ω A x 𝒫 A Fin x : 𝒫 A Fin onto fi A
15 fodomnum 𝒫 A Fin dom card x 𝒫 A Fin x : 𝒫 A Fin onto fi A fi A 𝒫 A Fin
16 11 14 15 sylc A dom card ω A fi A 𝒫 A Fin
17 domtr fi A 𝒫 A Fin 𝒫 A Fin A fi A A
18 16 9 17 syl2anc A dom card ω A fi A A
19 fvex fi A V
20 ssfii A dom card A fi A
21 20 adantr A dom card ω A A fi A
22 ssdomg fi A V A fi A A fi A
23 19 21 22 mpsyl A dom card ω A A fi A
24 sbth fi A A A fi A fi A A
25 18 23 24 syl2anc A dom card ω A fi A A