Metamath Proof Explorer


Theorem inficc

Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses inficc.a φ A *
inficc.b φ B *
inficc.s φ S A B
inficc.n0 φ S
Assertion inficc φ sup S * < A B

Proof

Step Hyp Ref Expression
1 inficc.a φ A *
2 inficc.b φ B *
3 inficc.s φ S A B
4 inficc.n0 φ S
5 iccssxr A B *
6 5 a1i φ A B *
7 3 6 sstrd φ S *
8 infxrcl S * sup S * < *
9 7 8 syl φ sup S * < *
10 1 adantr φ x S A *
11 2 adantr φ x S B *
12 3 sselda φ x S x A B
13 iccgelb A * B * x A B A x
14 10 11 12 13 syl3anc φ x S A x
15 14 ralrimiva φ x S A x
16 infxrgelb S * A * A sup S * < x S A x
17 7 1 16 syl2anc φ A sup S * < x S A x
18 15 17 mpbird φ A sup S * <
19 n0 S x x S
20 4 19 sylib φ x x S
21 9 adantr φ x S sup S * < *
22 5 12 sseldi φ x S x *
23 7 adantr φ x S S *
24 simpr φ x S x S
25 infxrlb S * x S sup S * < x
26 23 24 25 syl2anc φ x S sup S * < x
27 iccleub A * B * x A B x B
28 10 11 12 27 syl3anc φ x S x B
29 21 22 11 26 28 xrletrd φ x S sup S * < B
30 29 ex φ x S sup S * < B
31 30 exlimdv φ x x S sup S * < B
32 20 31 mpd φ sup S * < B
33 1 2 9 18 32 eliccxrd φ sup S * < A B