Metamath Proof Explorer


Theorem infinf

Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion infinf A B ¬ A Fin ω A

Proof

Step Hyp Ref Expression
1 isfinite A Fin A ω
2 1 notbii ¬ A Fin ¬ A ω
3 omex ω V
4 domtri ω V A B ω A ¬ A ω
5 3 4 mpan A B ω A ¬ A ω
6 2 5 bitr4id A B ¬ A Fin ω A