Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infiso
Next ⟩
Ordinal isomorphism, Hartogs's theorem
Metamath Proof Explorer
Ascii
Unicode
Theorem
infiso
Description:
Image of an infimum under an isomorphism.
(Contributed by
AV
, 4-Sep-2020)
Ref
Expression
Hypotheses
infiso.1
⊢
φ
→
F
Isom
R
,
S
A
B
infiso.2
⊢
φ
→
C
⊆
A
infiso.3
⊢
φ
→
∃
x
∈
A
∀
y
∈
C
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
C
z
R
y
infiso.4
⊢
φ
→
R
Or
A
Assertion
infiso
⊢
φ
→
sup
F
C
B
S
=
F
⁡
sup
C
A
R
Proof
Step
Hyp
Ref
Expression
1
infiso.1
⊢
φ
→
F
Isom
R
,
S
A
B
2
infiso.2
⊢
φ
→
C
⊆
A
3
infiso.3
⊢
φ
→
∃
x
∈
A
∀
y
∈
C
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
C
z
R
y
4
infiso.4
⊢
φ
→
R
Or
A
5
isocnv2
⊢
F
Isom
R
,
S
A
B
↔
F
Isom
R
-1
,
S
-1
A
B
6
1
5
sylib
⊢
φ
→
F
Isom
R
-1
,
S
-1
A
B
7
4
3
infcllem
⊢
φ
→
∃
x
∈
A
∀
y
∈
C
¬
x
R
-1
y
∧
∀
y
∈
A
y
R
-1
x
→
∃
z
∈
C
y
R
-1
z
8
cnvso
⊢
R
Or
A
↔
R
-1
Or
A
9
4
8
sylib
⊢
φ
→
R
-1
Or
A
10
6
2
7
9
supiso
⊢
φ
→
sup
F
C
B
S
-1
=
F
⁡
sup
C
A
R
-1
11
df-inf
⊢
sup
F
C
B
S
=
sup
F
C
B
S
-1
12
df-inf
⊢
sup
C
A
R
=
sup
C
A
R
-1
13
12
fveq2i
⊢
F
⁡
sup
C
A
R
=
F
⁡
sup
C
A
R
-1
14
10
11
13
3eqtr4g
⊢
φ
→
sup
F
C
B
S
=
F
⁡
sup
C
A
R