Metamath Proof Explorer


Theorem infiso

Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020)

Ref Expression
Hypotheses infiso.1 φ F Isom R , S A B
infiso.2 φ C A
infiso.3 φ x A y C ¬ y R x y A x R y z C z R y
infiso.4 φ R Or A
Assertion infiso φ sup F C B S = F sup C A R

Proof

Step Hyp Ref Expression
1 infiso.1 φ F Isom R , S A B
2 infiso.2 φ C A
3 infiso.3 φ x A y C ¬ y R x y A x R y z C z R y
4 infiso.4 φ R Or A
5 isocnv2 F Isom R , S A B F Isom R -1 , S -1 A B
6 1 5 sylib φ F Isom R -1 , S -1 A B
7 4 3 infcllem φ x A y C ¬ x R -1 y y A y R -1 x z C y R -1 z
8 cnvso R Or A R -1 Or A
9 4 8 sylib φ R -1 Or A
10 6 2 7 9 supiso φ sup F C B S -1 = F sup C A R -1
11 df-inf sup F C B S = sup F C B S -1
12 df-inf sup C A R = sup C A R -1
13 12 fveq2i F sup C A R = F sup C A R -1
14 10 11 13 3eqtr4g φ sup F C B S = F sup C A R