Metamath Proof Explorer


Theorem inflb

Description: An infimum is a lower bound. See also infcl and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φ R Or A
infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
Assertion inflb φ C B ¬ C R sup B A R

Proof

Step Hyp Ref Expression
1 infcl.1 φ R Or A
2 infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
3 cnvso R Or A R -1 Or A
4 1 3 sylib φ R -1 Or A
5 1 2 infcllem φ x A y B ¬ x R -1 y y A y R -1 x z B y R -1 z
6 4 5 supub φ C B ¬ sup B A R -1 R -1 C
7 6 imp φ C B ¬ sup B A R -1 R -1 C
8 df-inf sup B A R = sup B A R -1
9 8 a1i φ C B sup B A R = sup B A R -1
10 9 breq2d φ C B C R sup B A R C R sup B A R -1
11 4 5 supcl φ sup B A R -1 A
12 brcnvg sup B A R -1 A C B sup B A R -1 R -1 C C R sup B A R -1
13 12 bicomd sup B A R -1 A C B C R sup B A R -1 sup B A R -1 R -1 C
14 11 13 sylan φ C B C R sup B A R -1 sup B A R -1 R -1 C
15 10 14 bitrd φ C B C R sup B A R sup B A R -1 R -1 C
16 7 15 mtbird φ C B ¬ C R sup B A R
17 16 ex φ C B ¬ C R sup B A R