Metamath Proof Explorer


Theorem infleinf

Description: If any element of B can be approximated from above by members of A , then the infimum of A is less than or equal to the infimum of B . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses infleinf.a φ A *
infleinf.b φ B *
infleinf.c φ x B y + z A z x + 𝑒 y
Assertion infleinf φ sup A * < sup B * <

Proof

Step Hyp Ref Expression
1 infleinf.a φ A *
2 infleinf.b φ B *
3 infleinf.c φ x B y + z A z x + 𝑒 y
4 infxrcl A * sup A * < *
5 1 4 syl φ sup A * < *
6 pnfge sup A * < * sup A * < +∞
7 5 6 syl φ sup A * < +∞
8 7 adantr φ B = sup A * < +∞
9 infeq1 B = sup B * < = sup * <
10 xrinf0 sup * < = +∞
11 10 a1i B = sup * < = +∞
12 9 11 eqtrd B = sup B * < = +∞
13 12 eqcomd B = +∞ = sup B * <
14 13 adantl φ B = +∞ = sup B * <
15 8 14 breqtrd φ B = sup A * < sup B * <
16 neqne ¬ B = B
17 16 adantl φ ¬ B = B
18 5 adantr φ sup B * < = −∞ sup A * < *
19 id r r
20 2re 2
21 20 a1i r 2
22 19 21 resubcld r r 2
23 22 adantl φ sup B * < = −∞ r r 2
24 simpr φ sup B * < = −∞ sup B * < = −∞
25 infxrunb2 B * y x B x < y sup B * < = −∞
26 2 25 syl φ y x B x < y sup B * < = −∞
27 26 adantr φ sup B * < = −∞ y x B x < y sup B * < = −∞
28 24 27 mpbird φ sup B * < = −∞ y x B x < y
29 28 adantr φ sup B * < = −∞ r y x B x < y
30 breq2 y = r 2 x < y x < r 2
31 30 rexbidv y = r 2 x B x < y x B x < r 2
32 31 rspcva r 2 y x B x < y x B x < r 2
33 23 29 32 syl2anc φ sup B * < = −∞ r x B x < r 2
34 simpl φ x B φ
35 simpr φ x B x B
36 1rp 1 +
37 36 a1i φ x B 1 +
38 1ex 1 V
39 eleq1 y = 1 y + 1 +
40 39 3anbi3d y = 1 φ x B y + φ x B 1 +
41 oveq2 y = 1 x + 𝑒 y = x + 𝑒 1
42 41 breq2d y = 1 z x + 𝑒 y z x + 𝑒 1
43 42 rexbidv y = 1 z A z x + 𝑒 y z A z x + 𝑒 1
44 40 43 imbi12d y = 1 φ x B y + z A z x + 𝑒 y φ x B 1 + z A z x + 𝑒 1
45 38 44 3 vtocl φ x B 1 + z A z x + 𝑒 1
46 34 35 37 45 syl3anc φ x B z A z x + 𝑒 1
47 46 adantlr φ r x B z A z x + 𝑒 1
48 47 3adant3 φ r x B x < r 2 z A z x + 𝑒 1
49 simp1l φ r x B x < r 2 φ
50 49 ad2antrr φ r x B x < r 2 z A z x + 𝑒 1 φ
51 50 1 syl φ r x B x < r 2 z A z x + 𝑒 1 A *
52 50 2 syl φ r x B x < r 2 z A z x + 𝑒 1 B *
53 simp1r φ r x B x < r 2 r
54 53 ad2antrr φ r x B x < r 2 z A z x + 𝑒 1 r
55 simp2 φ r x B x < r 2 x B
56 55 ad2antrr φ r x B x < r 2 z A z x + 𝑒 1 x B
57 simpll3 φ r x B x < r 2 z A z x + 𝑒 1 x < r 2
58 simplr φ r x B x < r 2 z A z x + 𝑒 1 z A
59 simpr φ r x B x < r 2 z A z x + 𝑒 1 z x + 𝑒 1
60 51 52 54 56 57 58 59 infleinflem2 φ r x B x < r 2 z A z x + 𝑒 1 z < r
61 60 ex φ r x B x < r 2 z A z x + 𝑒 1 z < r
62 61 reximdva φ r x B x < r 2 z A z x + 𝑒 1 z A z < r
63 48 62 mpd φ r x B x < r 2 z A z < r
64 63 3exp φ r x B x < r 2 z A z < r
65 64 adantlr φ sup B * < = −∞ r x B x < r 2 z A z < r
66 65 rexlimdv φ sup B * < = −∞ r x B x < r 2 z A z < r
67 33 66 mpd φ sup B * < = −∞ r z A z < r
68 67 ralrimiva φ sup B * < = −∞ r z A z < r
69 infxrunb2 A * r z A z < r sup A * < = −∞
70 1 69 syl φ r z A z < r sup A * < = −∞
71 70 adantr φ sup B * < = −∞ r z A z < r sup A * < = −∞
72 68 71 mpbid φ sup B * < = −∞ sup A * < = −∞
73 72 24 eqtr4d φ sup B * < = −∞ sup A * < = sup B * <
74 18 73 xreqled φ sup B * < = −∞ sup A * < sup B * <
75 74 adantlr φ B sup B * < = −∞ sup A * < sup B * <
76 mnfxr −∞ *
77 76 a1i φ −∞ *
78 77 ad2antrr φ B ¬ sup B * < = −∞ −∞ *
79 infxrcl B * sup B * < *
80 2 79 syl φ sup B * < *
81 80 ad2antrr φ B ¬ sup B * < = −∞ sup B * < *
82 mnfle sup B * < * −∞ sup B * <
83 81 82 syl φ B ¬ sup B * < = −∞ −∞ sup B * <
84 neqne ¬ sup B * < = −∞ sup B * < −∞
85 84 necomd ¬ sup B * < = −∞ −∞ sup B * <
86 85 adantl φ B ¬ sup B * < = −∞ −∞ sup B * <
87 78 81 83 86 xrleneltd φ B ¬ sup B * < = −∞ −∞ < sup B * <
88 5 ad2antrr φ B −∞ < sup B * < sup A * < *
89 80 ad2antrr φ B −∞ < sup B * < sup B * < *
90 nfv b φ B −∞ < sup B * < w +
91 2 ad3antrrr φ B −∞ < sup B * < w + B *
92 simpllr φ B −∞ < sup B * < w + B
93 simpr φ −∞ < sup B * < −∞ < sup B * <
94 infxrbnd2 B * b x B b x −∞ < sup B * <
95 2 94 syl φ b x B b x −∞ < sup B * <
96 95 adantr φ −∞ < sup B * < b x B b x −∞ < sup B * <
97 93 96 mpbird φ −∞ < sup B * < b x B b x
98 97 ad4ant13 φ B −∞ < sup B * < w + b x B b x
99 simpr φ B −∞ < sup B * < w + w +
100 99 rphalfcld φ B −∞ < sup B * < w + w 2 +
101 90 91 92 98 100 infrpge φ B −∞ < sup B * < w + x B x sup B * < + 𝑒 w 2
102 simpll φ w + x B φ
103 simpr φ w + x B x B
104 rphalfcl w + w 2 +
105 104 ad2antlr φ w + x B w 2 +
106 ovex w 2 V
107 eleq1 y = w 2 y + w 2 +
108 107 3anbi3d y = w 2 φ x B y + φ x B w 2 +
109 oveq2 y = w 2 x + 𝑒 y = x + 𝑒 w 2
110 109 breq2d y = w 2 z x + 𝑒 y z x + 𝑒 w 2
111 110 rexbidv y = w 2 z A z x + 𝑒 y z A z x + 𝑒 w 2
112 108 111 imbi12d y = w 2 φ x B y + z A z x + 𝑒 y φ x B w 2 + z A z x + 𝑒 w 2
113 106 112 3 vtocl φ x B w 2 + z A z x + 𝑒 w 2
114 102 103 105 113 syl3anc φ w + x B z A z x + 𝑒 w 2
115 114 3adant3 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2
116 simp11l φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 φ
117 116 1 syl φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 A *
118 116 2 syl φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 B *
119 simp11 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 φ w +
120 119 simprd φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 w +
121 simp12 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 x B
122 simp3 φ w + x B x sup B * < + 𝑒 w 2 x sup B * < + 𝑒 w 2
123 122 3ad2ant1 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 x sup B * < + 𝑒 w 2
124 simp2 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 z A
125 simp3 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 z x + 𝑒 w 2
126 117 118 120 121 123 124 125 infleinflem1 φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
127 126 3exp φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
128 127 rexlimdv φ w + x B x sup B * < + 𝑒 w 2 z A z x + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
129 115 128 mpd φ w + x B x sup B * < + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
130 129 3exp φ w + x B x sup B * < + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
131 130 rexlimdv φ w + x B x sup B * < + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
132 131 ad4ant14 φ B −∞ < sup B * < w + x B x sup B * < + 𝑒 w 2 sup A * < sup B * < + 𝑒 w
133 101 132 mpd φ B −∞ < sup B * < w + sup A * < sup B * < + 𝑒 w
134 88 89 133 xrlexaddrp φ B −∞ < sup B * < sup A * < sup B * <
135 87 134 syldan φ B ¬ sup B * < = −∞ sup A * < sup B * <
136 75 135 pm2.61dan φ B sup A * < sup B * <
137 17 136 syldan φ ¬ B = sup A * < sup B * <
138 15 137 pm2.61dan φ sup A * < sup B * <