Metamath Proof Explorer


Theorem infleinflem2

Description: Lemma for infleinf , when inf ( B , RR* , < ) = -oo . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses infleinflem2.a φ A *
infleinflem2.b φ B *
infleinflem2.r φ R
infleinflem2.x φ X B
infleinflem2.t φ X < R 2
infleinflem2.z φ Z A
infleinflem2.l φ Z X + 𝑒 1
Assertion infleinflem2 φ Z < R

Proof

Step Hyp Ref Expression
1 infleinflem2.a φ A *
2 infleinflem2.b φ B *
3 infleinflem2.r φ R
4 infleinflem2.x φ X B
5 infleinflem2.t φ X < R 2
6 infleinflem2.z φ Z A
7 infleinflem2.l φ Z X + 𝑒 1
8 3 adantr φ Z = −∞ R
9 simpr φ Z = −∞ Z = −∞
10 simpr R Z = −∞ Z = −∞
11 mnflt R −∞ < R
12 11 adantr R Z = −∞ −∞ < R
13 10 12 eqbrtrd R Z = −∞ Z < R
14 8 9 13 syl2anc φ Z = −∞ Z < R
15 simpl φ ¬ Z = −∞ φ
16 neqne ¬ Z = −∞ Z −∞
17 16 adantl φ ¬ Z = −∞ Z −∞
18 3 adantr φ Z −∞ R
19 id φ φ
20 2 sselda φ X B X *
21 19 4 20 syl2anc φ X *
22 21 adantr φ Z −∞ X *
23 1 sselda φ Z A Z *
24 19 6 23 syl2anc φ Z *
25 24 adantr φ Z −∞ Z *
26 simpr φ Z −∞ Z −∞
27 pnfxr +∞ *
28 27 a1i φ +∞ *
29 peano2rem R R 1
30 29 rexrd R R 1 *
31 3 30 syl φ R 1 *
32 2 4 sseldd φ X *
33 id X * X *
34 1xr 1 *
35 34 a1i X * 1 *
36 33 35 xaddcld X * X + 𝑒 1 *
37 32 36 syl φ X + 𝑒 1 *
38 oveq1 X = −∞ X + 𝑒 1 = −∞ + 𝑒 1
39 1re 1
40 renepnf 1 1 +∞
41 39 40 ax-mp 1 +∞
42 xaddmnf2 1 * 1 +∞ −∞ + 𝑒 1 = −∞
43 34 41 42 mp2an −∞ + 𝑒 1 = −∞
44 43 a1i X = −∞ −∞ + 𝑒 1 = −∞
45 38 44 eqtrd X = −∞ X + 𝑒 1 = −∞
46 45 adantl R X = −∞ X + 𝑒 1 = −∞
47 29 mnfltd R −∞ < R 1
48 47 adantr R X = −∞ −∞ < R 1
49 46 48 eqbrtrd R X = −∞ X + 𝑒 1 < R 1
50 49 adantlr R X * X = −∞ X + 𝑒 1 < R 1
51 50 3adantl3 R X * X < R 2 X = −∞ X + 𝑒 1 < R 1
52 simpl R X * X < R 2 ¬ X = −∞ R X * X < R 2
53 simpl2 R X * X < R 2 ¬ X = −∞ X *
54 neqne ¬ X = −∞ X −∞
55 54 adantl R X * X < R 2 ¬ X = −∞ X −∞
56 simp2 R X * X < R 2 X *
57 27 a1i R X * X < R 2 +∞ *
58 id R R
59 2re 2
60 59 a1i R 2
61 58 60 resubcld R R 2
62 61 rexrd R R 2 *
63 62 3ad2ant1 R X * X < R 2 R 2 *
64 simp3 R X * X < R 2 X < R 2
65 61 ltpnfd R R 2 < +∞
66 65 3ad2ant1 R X * X < R 2 R 2 < +∞
67 56 63 57 64 66 xrlttrd R X * X < R 2 X < +∞
68 56 57 67 xrltned R X * X < R 2 X +∞
69 68 adantr R X * X < R 2 ¬ X = −∞ X +∞
70 53 55 69 xrred R X * X < R 2 ¬ X = −∞ X
71 id X X
72 71 ad2antlr R X X < R 2 X
73 61 ad2antrr R X X < R 2 R 2
74 1red X 1
75 72 74 syl R X X < R 2 1
76 simpr R X X < R 2 X < R 2
77 72 73 75 76 ltadd1dd R X X < R 2 X + 1 < R - 2 + 1
78 recn R R
79 id R R
80 2cnd R 2
81 1cnd R 1
82 79 80 81 subsubd R R 2 1 = R - 2 + 1
83 2m1e1 2 1 = 1
84 83 oveq2i R 2 1 = R 1
85 84 a1i R R 2 1 = R 1
86 82 85 eqtr3d R R - 2 + 1 = R 1
87 78 86 syl R R - 2 + 1 = R 1
88 87 ad2antrr R X X < R 2 R - 2 + 1 = R 1
89 77 88 breqtrd R X X < R 2 X + 1 < R 1
90 71 74 rexaddd X X + 𝑒 1 = X + 1
91 90 breq1d X X + 𝑒 1 < R 1 X + 1 < R 1
92 91 ad2antlr R X X < R 2 X + 𝑒 1 < R 1 X + 1 < R 1
93 89 92 mpbird R X X < R 2 X + 𝑒 1 < R 1
94 93 an32s R X < R 2 X X + 𝑒 1 < R 1
95 94 3adantl2 R X * X < R 2 X X + 𝑒 1 < R 1
96 52 70 95 syl2anc R X * X < R 2 ¬ X = −∞ X + 𝑒 1 < R 1
97 51 96 pm2.61dan R X * X < R 2 X + 𝑒 1 < R 1
98 3 32 5 97 syl3anc φ X + 𝑒 1 < R 1
99 24 37 31 7 98 xrlelttrd φ Z < R 1
100 29 ltpnfd R R 1 < +∞
101 3 100 syl φ R 1 < +∞
102 24 31 28 99 101 xrlttrd φ Z < +∞
103 24 28 102 xrltned φ Z +∞
104 103 adantr φ Z −∞ Z +∞
105 25 26 104 xrred φ Z −∞ Z
106 7 adantr φ Z −∞ Z X + 𝑒 1
107 simpl3 Z X * Z X + 𝑒 1 X = −∞ Z X + 𝑒 1
108 45 adantl Z X = −∞ X + 𝑒 1 = −∞
109 mnflt Z −∞ < Z
110 109 adantr Z X = −∞ −∞ < Z
111 108 110 eqbrtrd Z X = −∞ X + 𝑒 1 < Z
112 mnfxr −∞ *
113 108 112 eqeltrdi Z X = −∞ X + 𝑒 1 *
114 rexr Z Z *
115 114 adantr Z X = −∞ Z *
116 113 115 xrltnled Z X = −∞ X + 𝑒 1 < Z ¬ Z X + 𝑒 1
117 111 116 mpbid Z X = −∞ ¬ Z X + 𝑒 1
118 117 3ad2antl1 Z X * Z X + 𝑒 1 X = −∞ ¬ Z X + 𝑒 1
119 107 118 pm2.65da Z X * Z X + 𝑒 1 ¬ X = −∞
120 119 neqned Z X * Z X + 𝑒 1 X −∞
121 105 22 106 120 syl3anc φ Z −∞ X −∞
122 3 21 5 68 syl3anc φ X +∞
123 122 adantr φ Z −∞ X +∞
124 22 121 123 xrred φ Z −∞ X
125 5 adantr φ Z −∞ X < R 2
126 18 124 125 jca31 φ Z −∞ R X X < R 2
127 simplr R X X < R 2 Z Z X + 𝑒 1 Z
128 simp-4r R X X < R 2 Z Z X + 𝑒 1 X
129 71 74 readdcld X X + 1
130 90 129 eqeltrd X X + 𝑒 1
131 128 130 syl R X X < R 2 Z Z X + 𝑒 1 X + 𝑒 1
132 58 ad4antr R X X < R 2 Z Z X + 𝑒 1 R
133 simpr R X X < R 2 Z Z X + 𝑒 1 Z X + 𝑒 1
134 130 ad3antlr R X X < R 2 Z X + 𝑒 1
135 29 ad3antrrr R X X < R 2 Z R 1
136 58 ad3antrrr R X X < R 2 Z R
137 93 adantr R X X < R 2 Z X + 𝑒 1 < R 1
138 136 ltm1d R X X < R 2 Z R 1 < R
139 134 135 136 137 138 lttrd R X X < R 2 Z X + 𝑒 1 < R
140 139 adantr R X X < R 2 Z Z X + 𝑒 1 X + 𝑒 1 < R
141 127 131 132 133 140 lelttrd R X X < R 2 Z Z X + 𝑒 1 Z < R
142 126 105 106 141 syl21anc φ Z −∞ Z < R
143 15 17 142 syl2anc φ ¬ Z = −∞ Z < R
144 14 143 pm2.61dan φ Z < R