Step |
Hyp |
Ref |
Expression |
1 |
|
infleinflem2.a |
|
2 |
|
infleinflem2.b |
|
3 |
|
infleinflem2.r |
|
4 |
|
infleinflem2.x |
|
5 |
|
infleinflem2.t |
|
6 |
|
infleinflem2.z |
|
7 |
|
infleinflem2.l |
|
8 |
3
|
adantr |
|
9 |
|
simpr |
|
10 |
|
simpr |
|
11 |
|
mnflt |
|
12 |
11
|
adantr |
|
13 |
10 12
|
eqbrtrd |
|
14 |
8 9 13
|
syl2anc |
|
15 |
|
simpl |
|
16 |
|
neqne |
|
17 |
16
|
adantl |
|
18 |
3
|
adantr |
|
19 |
|
id |
|
20 |
2
|
sselda |
|
21 |
19 4 20
|
syl2anc |
|
22 |
21
|
adantr |
|
23 |
1
|
sselda |
|
24 |
19 6 23
|
syl2anc |
|
25 |
24
|
adantr |
|
26 |
|
simpr |
|
27 |
|
pnfxr |
|
28 |
27
|
a1i |
|
29 |
|
peano2rem |
|
30 |
29
|
rexrd |
|
31 |
3 30
|
syl |
|
32 |
2 4
|
sseldd |
|
33 |
|
id |
|
34 |
|
1xr |
|
35 |
34
|
a1i |
|
36 |
33 35
|
xaddcld |
|
37 |
32 36
|
syl |
|
38 |
|
oveq1 |
|
39 |
|
1re |
|
40 |
|
renepnf |
|
41 |
39 40
|
ax-mp |
|
42 |
|
xaddmnf2 |
|
43 |
34 41 42
|
mp2an |
|
44 |
43
|
a1i |
|
45 |
38 44
|
eqtrd |
|
46 |
45
|
adantl |
|
47 |
29
|
mnfltd |
|
48 |
47
|
adantr |
|
49 |
46 48
|
eqbrtrd |
|
50 |
49
|
adantlr |
|
51 |
50
|
3adantl3 |
|
52 |
|
simpl |
|
53 |
|
simpl2 |
|
54 |
|
neqne |
|
55 |
54
|
adantl |
|
56 |
|
simp2 |
|
57 |
27
|
a1i |
|
58 |
|
id |
|
59 |
|
2re |
|
60 |
59
|
a1i |
|
61 |
58 60
|
resubcld |
|
62 |
61
|
rexrd |
|
63 |
62
|
3ad2ant1 |
|
64 |
|
simp3 |
|
65 |
61
|
ltpnfd |
|
66 |
65
|
3ad2ant1 |
|
67 |
56 63 57 64 66
|
xrlttrd |
|
68 |
56 57 67
|
xrltned |
|
69 |
68
|
adantr |
|
70 |
53 55 69
|
xrred |
|
71 |
|
id |
|
72 |
71
|
ad2antlr |
|
73 |
61
|
ad2antrr |
|
74 |
|
1red |
|
75 |
72 74
|
syl |
|
76 |
|
simpr |
|
77 |
72 73 75 76
|
ltadd1dd |
|
78 |
|
recn |
|
79 |
|
id |
|
80 |
|
2cnd |
|
81 |
|
1cnd |
|
82 |
79 80 81
|
subsubd |
|
83 |
|
2m1e1 |
|
84 |
83
|
oveq2i |
|
85 |
84
|
a1i |
|
86 |
82 85
|
eqtr3d |
|
87 |
78 86
|
syl |
|
88 |
87
|
ad2antrr |
|
89 |
77 88
|
breqtrd |
|
90 |
71 74
|
rexaddd |
|
91 |
90
|
breq1d |
|
92 |
91
|
ad2antlr |
|
93 |
89 92
|
mpbird |
|
94 |
93
|
an32s |
|
95 |
94
|
3adantl2 |
|
96 |
52 70 95
|
syl2anc |
|
97 |
51 96
|
pm2.61dan |
|
98 |
3 32 5 97
|
syl3anc |
|
99 |
24 37 31 7 98
|
xrlelttrd |
|
100 |
29
|
ltpnfd |
|
101 |
3 100
|
syl |
|
102 |
24 31 28 99 101
|
xrlttrd |
|
103 |
24 28 102
|
xrltned |
|
104 |
103
|
adantr |
|
105 |
25 26 104
|
xrred |
|
106 |
7
|
adantr |
|
107 |
|
simpl3 |
|
108 |
45
|
adantl |
|
109 |
|
mnflt |
|
110 |
109
|
adantr |
|
111 |
108 110
|
eqbrtrd |
|
112 |
|
mnfxr |
|
113 |
108 112
|
eqeltrdi |
|
114 |
|
rexr |
|
115 |
114
|
adantr |
|
116 |
113 115
|
xrltnled |
|
117 |
111 116
|
mpbid |
|
118 |
117
|
3ad2antl1 |
|
119 |
107 118
|
pm2.65da |
|
120 |
119
|
neqned |
|
121 |
105 22 106 120
|
syl3anc |
|
122 |
3 21 5 68
|
syl3anc |
|
123 |
122
|
adantr |
|
124 |
22 121 123
|
xrred |
|
125 |
5
|
adantr |
|
126 |
18 124 125
|
jca31 |
|
127 |
|
simplr |
|
128 |
|
simp-4r |
|
129 |
71 74
|
readdcld |
|
130 |
90 129
|
eqeltrd |
|
131 |
128 130
|
syl |
|
132 |
58
|
ad4antr |
|
133 |
|
simpr |
|
134 |
130
|
ad3antlr |
|
135 |
29
|
ad3antrrr |
|
136 |
58
|
ad3antrrr |
|
137 |
93
|
adantr |
|
138 |
136
|
ltm1d |
|
139 |
134 135 136 137 138
|
lttrd |
|
140 |
139
|
adantr |
|
141 |
127 131 132 133 140
|
lelttrd |
|
142 |
126 105 106 141
|
syl21anc |
|
143 |
15 17 142
|
syl2anc |
|
144 |
14 143
|
pm2.61dan |
|