Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
infm3lem
Next ⟩
infm3
Metamath Proof Explorer
Ascii
Unicode
Theorem
infm3lem
Description:
Lemma for
infm3
.
(Contributed by
NM
, 14-Jun-2005)
Ref
Expression
Assertion
infm3lem
⊢
x
∈
ℝ
→
∃
y
∈
ℝ
x
=
−
y
Proof
Step
Hyp
Ref
Expression
1
renegcl
⊢
x
∈
ℝ
→
−
x
∈
ℝ
2
recn
⊢
x
∈
ℝ
→
x
∈
ℂ
3
2
negnegd
⊢
x
∈
ℝ
→
−
−
x
=
x
4
3
eqcomd
⊢
x
∈
ℝ
→
x
=
−
−
x
5
negeq
⊢
y
=
−
x
→
−
y
=
−
−
x
6
5
rspceeqv
⊢
−
x
∈
ℝ
∧
x
=
−
−
x
→
∃
y
∈
ℝ
x
=
−
y
7
1
4
6
syl2anc
⊢
x
∈
ℝ
→
∃
y
∈
ℝ
x
=
−
y