Metamath Proof Explorer


Theorem infm3lem

Description: Lemma for infm3 . (Contributed by NM, 14-Jun-2005)

Ref Expression
Assertion infm3lem x y x = y

Proof

Step Hyp Ref Expression
1 renegcl x x
2 recn x x
3 2 negnegd x x = x
4 3 eqcomd x x = x
5 negeq y = x y = x
6 5 rspceeqv x x = x y x = y
7 1 4 6 syl2anc x y x = y