Metamath Proof Explorer


Theorem infmap2

Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. Although this version of infmap avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infmap2 ωABAABdomcardABx|xAxB

Proof

Step Hyp Ref Expression
1 oveq2 B=AB=A
2 breq2 B=xBx
3 2 anbi2d B=xAxBxAx
4 3 abbidv B=x|xAxB=x|xAx
5 1 4 breq12d B=ABx|xAxBAx|xAx
6 simpl2 ωABAABdomcardBBA
7 reldom Rel
8 7 brrelex1i BABV
9 6 8 syl ωABAABdomcardBBV
10 7 brrelex2i BAAV
11 6 10 syl ωABAABdomcardBAV
12 xpcomeng BVAVB×AA×B
13 9 11 12 syl2anc ωABAABdomcardBB×AA×B
14 simpl3 ωABAABdomcardBABdomcard
15 simpr ωABAABdomcardBB
16 mapdom3 AVBVBAAB
17 11 9 15 16 syl3anc ωABAABdomcardBAAB
18 numdom ABdomcardAABAdomcard
19 14 17 18 syl2anc ωABAABdomcardBAdomcard
20 simpl1 ωABAABdomcardBωA
21 infxpabs AdomcardωABBAA×BA
22 19 20 15 6 21 syl22anc ωABAABdomcardBA×BA
23 entr B×AA×BA×BAB×AA
24 13 22 23 syl2anc ωABAABdomcardBB×AA
25 ssenen B×AAx|xB×AxBx|xAxB
26 24 25 syl ωABAABdomcardBx|xB×AxBx|xAxB
27 relen Rel
28 27 brrelex1i x|xB×AxBx|xAxBx|xB×AxBV
29 26 28 syl ωABAABdomcardBx|xB×AxBV
30 abid2 x|xAB=AB
31 elmapi xABx:BA
32 fssxp x:BAxB×A
33 ffun x:BAFunx
34 vex xV
35 34 fundmen Funxdomxx
36 ensym domxxxdomx
37 33 35 36 3syl x:BAxdomx
38 fdm x:BAdomx=B
39 37 38 breqtrd x:BAxB
40 32 39 jca x:BAxB×AxB
41 31 40 syl xABxB×AxB
42 41 ss2abi x|xABx|xB×AxB
43 30 42 eqsstrri ABx|xB×AxB
44 ssdomg x|xB×AxBVABx|xB×AxBABx|xB×AxB
45 29 43 44 mpisyl ωABAABdomcardBABx|xB×AxB
46 domentr ABx|xB×AxBx|xB×AxBx|xAxBABx|xAxB
47 45 26 46 syl2anc ωABAABdomcardBABx|xAxB
48 ovex ABV
49 48 mptex fABranfV
50 49 rnex ranfABranfV
51 ensym xBBx
52 51 ad2antll ωABAABdomcardBxAxBBx
53 bren Bxff:B1-1 ontox
54 52 53 sylib ωABAABdomcardBxAxBff:B1-1 ontox
55 f1of f:B1-1 ontoxf:Bx
56 55 adantl ωABAABdomcardBxAxBf:B1-1 ontoxf:Bx
57 simplrl ωABAABdomcardBxAxBf:B1-1 ontoxxA
58 56 57 fssd ωABAABdomcardBxAxBf:B1-1 ontoxf:BA
59 11 9 elmapd ωABAABdomcardBfABf:BA
60 59 ad2antrr ωABAABdomcardBxAxBf:B1-1 ontoxfABf:BA
61 58 60 mpbird ωABAABdomcardBxAxBf:B1-1 ontoxfAB
62 f1ofo f:B1-1 ontoxf:Bontox
63 forn f:Bontoxranf=x
64 62 63 syl f:B1-1 ontoxranf=x
65 64 adantl ωABAABdomcardBxAxBf:B1-1 ontoxranf=x
66 65 eqcomd ωABAABdomcardBxAxBf:B1-1 ontoxx=ranf
67 61 66 jca ωABAABdomcardBxAxBf:B1-1 ontoxfABx=ranf
68 67 ex ωABAABdomcardBxAxBf:B1-1 ontoxfABx=ranf
69 68 eximdv ωABAABdomcardBxAxBff:B1-1 ontoxffABx=ranf
70 54 69 mpd ωABAABdomcardBxAxBffABx=ranf
71 df-rex fABx=ranfffABx=ranf
72 70 71 sylibr ωABAABdomcardBxAxBfABx=ranf
73 72 ex ωABAABdomcardBxAxBfABx=ranf
74 73 ss2abdv ωABAABdomcardBx|xAxBx|fABx=ranf
75 eqid fABranf=fABranf
76 75 rnmpt ranfABranf=x|fABx=ranf
77 74 76 sseqtrrdi ωABAABdomcardBx|xAxBranfABranf
78 ssdomg ranfABranfVx|xAxBranfABranfx|xAxBranfABranf
79 50 77 78 mpsyl ωABAABdomcardBx|xAxBranfABranf
80 vex fV
81 80 rnex ranfV
82 81 rgenw fABranfV
83 75 fnmpt fABranfVfABranfFnAB
84 82 83 mp1i ωABAABdomcardBfABranfFnAB
85 dffn4 fABranfFnABfABranf:ABontoranfABranf
86 84 85 sylib ωABAABdomcardBfABranf:ABontoranfABranf
87 fodomnum ABdomcardfABranf:ABontoranfABranfranfABranfAB
88 14 86 87 sylc ωABAABdomcardBranfABranfAB
89 domtr x|xAxBranfABranfranfABranfABx|xAxBAB
90 79 88 89 syl2anc ωABAABdomcardBx|xAxBAB
91 sbth ABx|xAxBx|xAxBABABx|xAxB
92 47 90 91 syl2anc ωABAABdomcardBABx|xAxB
93 7 brrelex2i ωAAV
94 93 3ad2ant1 ωABAABdomcardAV
95 map0e AVA=1𝑜
96 94 95 syl ωABAABdomcardA=1𝑜
97 1oex 1𝑜V
98 97 enref 1𝑜1𝑜
99 df-sn =x|x=
100 df1o2 1𝑜=
101 en0 xx=
102 101 anbi2i xAxxAx=
103 0ss A
104 sseq1 x=xAA
105 103 104 mpbiri x=xA
106 105 pm4.71ri x=xAx=
107 102 106 bitr4i xAxx=
108 107 abbii x|xAx=x|x=
109 99 100 108 3eqtr4ri x|xAx=1𝑜
110 98 109 breqtrri 1𝑜x|xAx
111 96 110 eqbrtrdi ωABAABdomcardAx|xAx
112 5 92 111 pm2.61ne ωABAABdomcardABx|xAxB