Metamath Proof Explorer


Theorem infmin

Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infmin.1 φ R Or A
infmin.2 φ C A
infmin.3 φ C B
infmin.4 φ y B ¬ y R C
Assertion infmin φ sup B A R = C

Proof

Step Hyp Ref Expression
1 infmin.1 φ R Or A
2 infmin.2 φ C A
3 infmin.3 φ C B
4 infmin.4 φ y B ¬ y R C
5 simprr φ y A C R y C R y
6 breq1 z = C z R y C R y
7 6 rspcev C B C R y z B z R y
8 3 5 7 syl2an2r φ y A C R y z B z R y
9 1 2 4 8 eqinfd φ sup B A R = C