Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infmin.1 | ||
| infmin.2 | |||
| infmin.3 | |||
| infmin.4 | |||
| Assertion | infmin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infmin.1 | ||
| 2 | infmin.2 | ||
| 3 | infmin.3 | ||
| 4 | infmin.4 | ||
| 5 | simprr | ||
| 6 | breq1 | ||
| 7 | 6 | rspcev | |
| 8 | 3 5 7 | syl2an2r | |
| 9 | 1 2 4 8 | eqinfd |