Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infmin.1 | ||
infmin.2 | |||
infmin.3 | |||
infmin.4 | |||
Assertion | infmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infmin.1 | ||
2 | infmin.2 | ||
3 | infmin.3 | ||
4 | infmin.4 | ||
5 | simprr | ||
6 | breq1 | ||
7 | 6 | rspcev | |
8 | 3 5 7 | syl2an2r | |
9 | 1 2 4 8 | eqinfd |