Database
REAL AND COMPLEX NUMBERS
Order sets
Supremum and infimum on the extended reals
infmremnf
Next ⟩
infmrp1
Metamath Proof Explorer
Ascii
Unicode
Theorem
infmremnf
Description:
The infimum of the reals is minus infinity.
(Contributed by
AV
, 5-Sep-2020)
Ref
Expression
Assertion
infmremnf
⊢
sup
ℝ
ℝ
*
<
=
−∞
Proof
Step
Hyp
Ref
Expression
1
reltxrnmnf
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
2
xrltso
⊢
<
Or
ℝ
*
3
2
a1i
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
<
Or
ℝ
*
4
mnfxr
⊢
−∞
∈
ℝ
*
5
4
a1i
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
−∞
∈
ℝ
*
6
rexr
⊢
y
∈
ℝ
→
y
∈
ℝ
*
7
nltmnf
⊢
y
∈
ℝ
*
→
¬
y
<
−∞
8
6
7
syl
⊢
y
∈
ℝ
→
¬
y
<
−∞
9
8
adantl
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
∧
y
∈
ℝ
→
¬
y
<
−∞
10
breq2
⊢
x
=
y
→
−∞
<
x
↔
−∞
<
y
11
breq2
⊢
x
=
y
→
z
<
x
↔
z
<
y
12
11
rexbidv
⊢
x
=
y
→
∃
z
∈
ℝ
z
<
x
↔
∃
z
∈
ℝ
z
<
y
13
10
12
imbi12d
⊢
x
=
y
→
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
↔
−∞
<
y
→
∃
z
∈
ℝ
z
<
y
14
13
rspcv
⊢
y
∈
ℝ
*
→
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
−∞
<
y
→
∃
z
∈
ℝ
z
<
y
15
14
com23
⊢
y
∈
ℝ
*
→
−∞
<
y
→
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
∃
z
∈
ℝ
z
<
y
16
15
imp
⊢
y
∈
ℝ
*
∧
−∞
<
y
→
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
∃
z
∈
ℝ
z
<
y
17
16
impcom
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
∧
y
∈
ℝ
*
∧
−∞
<
y
→
∃
z
∈
ℝ
z
<
y
18
3
5
9
17
eqinfd
⊢
∀
x
∈
ℝ
*
−∞
<
x
→
∃
z
∈
ℝ
z
<
x
→
sup
ℝ
ℝ
*
<
=
−∞
19
1
18
ax-mp
⊢
sup
ℝ
ℝ
*
<
=
−∞